Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T12:59:10.506Z Has data issue: false hasContentIssue false

Evolution of microstructure in advanced ferritic-martensitic steels under irradiation: the origin of low temperature radiation embrittlement

Published online by Cambridge University Press:  27 December 2016

S. Rogozhkin*
Affiliation:
State Scientific Centre of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218 Moscow, Russia National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
A. Nikitin
Affiliation:
State Scientific Centre of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218 Moscow, Russia National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
N. Orlov
Affiliation:
State Scientific Centre of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218 Moscow, Russia National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
A. Bogachev
Affiliation:
State Scientific Centre of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218 Moscow, Russia National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
O. Korchuganova
Affiliation:
State Scientific Centre of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218 Moscow, Russia National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
A. Aleev
Affiliation:
State Scientific Centre of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218 Moscow, Russia National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
A. Zaluzhnyi
Affiliation:
State Scientific Centre of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218 Moscow, Russia National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
T. Kulevoy
Affiliation:
State Scientific Centre of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218 Moscow, Russia National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
R. Lindau
Affiliation:
Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
A. Möslang
Affiliation:
Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
P. Vladimirov
Affiliation:
Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
*
Get access

Abstract

Advanced reduced activation ferritic/martensitic steels and oxide dispersion-strengthened steels exhibit significant radiation embrittlement under low temperature neutron irradiation. In this study we focused on atom probe tomography (APT) of Eurofer97 and ODS Eurofer steels irradiated with neutrons and heavy ions at low temperatures. Previous TEM studies revealed dislocation loops in the neutron-irradiated f\m steels. At the same time, our APT showed early stages of solid solution decomposition. High density (1024 m–3) of ∼3–5 nm clusters enriched in chromium, manganese, and silicon atoms were found in Eurofer 97 irradiated in BOR-60 reactor to 32 dpa at 332°C. In this steel irradiated with Fe ions up to the dose of 24 dpa, pair correlation functions calculated using APT data showed the presence of Cr-enriched pre-phases.

APT study of ODS Eurofer found a significant change in the nanocluster composition after neutron irradiation to 32 dpa at 330 °C and an increase in cluster number density. APT of ODS steels irradiated with Fe ions at low temperatures revealed similar changes in nanoclusters.

These results suggest that irradiation-induced nucleation and evolution of very small precipitates may be the origin of low temperature radiation embrittlement of f\m steels.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lindau, R., Möslang, A., Rieth, M., Klimiankou, M., Materna Morris, E., Alamo, A., Tavassoli, F., Cayron, C., Lancha, M., Fernandez, P., Baluc, N., Schaublin, R., Diegele, E., Filacchioni, G., Rensman, J.W., Schaaf, B.V.D., Lucon, E., and Dietz, W., Fusion Eng. Des. 75–79, 989996 (2005).CrossRefGoogle Scholar
Lindau, R., Möslang, A., Schirra, M., Schlossmacher, P., Klimenkov, M., J. Nucl. Mater. 307–311, 769 (2002).CrossRefGoogle Scholar
Eiselt, Ch.Ch., Klimenkov, M., Lindau, R., Möslang, A., Sandim, H.R.Z., Padilha, A.F., Raabe, D., J. Nucl. Mater. 385, 231 (2009).CrossRefGoogle Scholar
Klimiankou, M., Lindau, R., Möslang, A., J. Nucl. Mater. 329–333, 347351 (2004).CrossRefGoogle Scholar
Aleev, A.A., Iskandarov, N.A., Klimenkov, M., Lindau, R., Möslang, A., Nikitin, A.A., Rogozhkin, S.V., Vladimirov, P., and Zaluzhnyi, A.G., J. Nucl. Mater. 409, 6571 (2011).CrossRefGoogle Scholar
Tavassoli, A.-A.F., Alamo, A., Bedel, L., Forest, L., Gentzbittel, J.-M., Rensman, J.-W., Diegele, E., Lindau, R., Schirra, M., Schmitt, R., Schneider, H.C., Petersen, C., Lancha, A.-M., Fernandez, P., Filacchioni, G., Maday, M.F., Mergia, K., Boukos, N., Baluc, , Spatig, P., Alves, E., Lucon, E., J. Nucl. Mater. 329–333, 257262 (2004).CrossRefGoogle Scholar
van der Schaaf, B., Tavassoli, F., Fazio, C., Rigal, E., Diegele, E., Lindau, R., LeMarois, G., Fusion Eng. Des. 69, 197203 (2003).CrossRefGoogle Scholar
Petersen, C., Povstyanko, A., Prokhorov, V., Fedoseev, A., Makarov, O., and Dafferner, B., J. Nucl. Mater. 367–370, 544549 (2007).CrossRefGoogle Scholar
Henry, J., Averty, X., and Alamo, A., J. Nucl. Mater. 417, 99103 (2011).CrossRefGoogle Scholar
Rogozhkin, S.V., Aleev, A.A., Zaluzhnyi, A.G., Nikitin, A.A., Iskandarov, N.A., Vladimirov, P., Lindau, R., and Möslang, A., J. Nucl. Mater. 409, 9499 (2011).CrossRefGoogle Scholar
Rogozhkin, S.V., Nikitin, A.A., Aleev, A.A., Germanov, A.B., Zaluzhnyi, A.G., Inorg. Mater. Appl. Res. 4 (2), 112-118 (2013).CrossRefGoogle Scholar
Coppola, R., Lindau, R., May, R.P., Möslang, A., and Valli, M., J. Nucl. Mater. 386–388, 195198 (2009).CrossRefGoogle Scholar
Materna Morris, E., Möslang, A., Rolli, R., and Schneider, H.C., J. Nucl. Mater. 386–388, 422425 (2009).CrossRefGoogle Scholar
Materna Morris, E., Möslang, A., Rolli, R., and Schneider, H.C., Fus. Eng. Des. 86, 26072610 (2011).CrossRefGoogle Scholar
Klimenkov, M., Materna Morris, E., and Möslang, A., J. Nucl. Mater. 417, 124126 (2011).CrossRefGoogle Scholar
Weiß, O.J., Gaganidze, E. and Aktaa, J., Quantative, Adv. Sci. Technol. (Faenza, Italy) 73, 118123 (2010).CrossRefGoogle Scholar
Gaganidze, E., Petersen, C., Materna Morris, E., Dethloff, C., Weiß, O.J., Aktaa, J., Povstyanko, A., Fedoseev, A., Makarov, O., and Prokhorov, V., J. Nucl. Mater. 417, 9398 (2011).CrossRefGoogle Scholar
Luzginova, N. V., Rensman, J., Pierick, P., and Hegeman, J. B. J., J. Nucl. Mater. 428, 192196 (2012).CrossRefGoogle Scholar
McClintock, D. A., Sokolov, M. A., Hoelzer, D. T., and Nanstad, R. K., J. Nucl. Mater. 392, 353359 (2009).CrossRefGoogle Scholar
Lucon, E., Leenaers, A., and Vandermeulen, W., Fusion Eng. Des. 82, 24382443 (2007).CrossRefGoogle Scholar
Dethloff, C., Gaganidze, E., Aktaa, J., J. Nucl. Mater. 454, 323331 (2014).CrossRefGoogle Scholar
Rogozhkin, S. V., Orlov, N. N., b, Aleev, A. A., Zaluzhnyi, A. G., Kozodaev, M. A., Kuibida, R. P., Kulevoi, T. V., Nikitin, A. A., Chalykh, B. B., Lindau, R., Möslang, A., and Vladimirov, P., Phys. Met. Metallogr. 116 (1), 72-78 (2015).CrossRefGoogle Scholar
Rogozhkin, S., Bogachev, A., Korchuganova, O., Nikitin, A., Orlov, N., Aleev, A., Zaluzhnyi, A., Kozodaev, M., Kulevoy, T., Chalykh, B., Lindau, R., Möslang, A., Vladimirov, P., Klimenkov, M., Heilmaier, M., Wagner, J., Seils, S., J. Nucl. Mater. Energy (2016) doi: 10.1016/j.nme.2016.06.011 Google Scholar
Rogozhkin, S. V., Aleev, A. A., Zaluzhnyi, A. G., Kuibeda, R. P., Kulevoy, T. V., Nikitin, A. A., Orlov, N. N., Chalyh, B. B., Shishmarev, V.B., Phys. Met. Metallogr. 113 (2), 200211 (2012).CrossRefGoogle Scholar
Kropachev, G., Kuibeda, R., Kozlov, A., Chalyh, B., Fertman, A.D., Kulevoy, T., Nikitin, A., Aleev, A., Rogozhkin, S., Rev. Sci. Instrum. 81 (1), 02B906 (2010).Google Scholar
Miller, M.K., Atom Probe Tomography: Analysis at the Atomic Level, New York: Kluwer, (2000).CrossRefGoogle Scholar
Klimenkov, M., Lindau, R., Möslang, A., J. Nucl. Mater. 386–388, 553556 (2009).CrossRefGoogle Scholar
Lucas, G.E., J. Nucl. Mater. 206, 287305 (1993).CrossRefGoogle Scholar
Danoix, F. and Auger, P., Mater. Charact. 44,177201 (2000).CrossRefGoogle Scholar
Rogozhkin, S. V., Korchuganova, O. A., Aleev, A. A., Inorg. Mater. Appl. Res. 7 (2), 210213 (2016).CrossRefGoogle Scholar
Brimbal, D., Beck, L., Troeber, O., Gaganidze, E., Trocellier, P., Aktaa, J., Lindau, R., J. Nucl. Mater. 465, 236244 (2015).CrossRefGoogle Scholar