Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T05:39:32.707Z Has data issue: false hasContentIssue false

Evidence of Variations in Atomic Distribution in Disordered Mixed Metal Hydroxides

Published online by Cambridge University Press:  29 July 2019

Wen Rong
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Canada
Sarah Stepan
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Canada
Rodney D. L. Smith*
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Canada Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
*
Get access

Abstract

Numerous fabrication protocols are known to yield transition metal oxides with structures related to layered double hydroxides, but the effect of fabrication protocol on the uniformity of mixed-metal compositions remain largely unexplored. We have analysed the apparent solubility limits and the structural implications of iron ions in nickel hydroxide lattices for materials prepared by four different fabrication protocols. Opposing shifts in the (100) and (001) reflection in powder X-ray diffraction results revealed a contraction of the nickel lattice upon successful incorporation of iron, with Ni-M distances exhibiting an apparently linear decrease with respect to iron content. This feature revealed the amount of iron incorporated into nickel-based materials to be dependent on fabrication protocol, varying from apparently negligible concentrations to over fifty atomic percent. The dependency of structure on fabrication protocols provides a handle to improve fundamental understanding of catalytically relevant coordination environments.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Trotochaud, L., Young, S.L., Ranney, J.K., and Boettcher, S.W., J. Am. Chem. Soc. 136, 6744 (2014).CrossRefGoogle Scholar
Friebel, D., Louie, M.W., Bajdich, M., Sanwald, K.E., Cai, Y., Wise, A.M., Cheng, M.-J., Sokaras, D., Weng, T.-C., Alonso-Mori, R., Davis, R.C., Bargar, J.R., Norskov, J.K., Nilsson, A., and Bell, A.T., J. Am. Chem. Soc. 137, 1305 (2015).CrossRefGoogle Scholar
Louie, M.W. and Bell, A.T., J. Am. Chem. Soc. 135, 12329 (2013).CrossRefGoogle Scholar
Chen, J.Y.C., Dang, L., Liang, H., Bi, W., Gerken, J.B., Jin, S., Alp, E.E., and Stahl, S.S., J. Am. Chem. Soc. 137, 15090 (2015).CrossRefGoogle Scholar
Li, N., Bediako, D.K., Hadt, R.G., Hayes, D., Kempa, T.J., von Cube, F., Bell, D.C., Chen, L.X., and Nocera, D.G., Proc. Natl. Acad. USA 114, 1486 (2017).CrossRefGoogle Scholar
Gonzalez-Flores, D., Klingan, K., Chernev, P., Loos, S., Mohammadi, M.R., Pasquini, C., Kubella, P., Zaharieva, I., Smith, R.D.L., and Dau, H., Sustain. Energy Fuels 2, 1986 (2018).CrossRefGoogle Scholar
Smith, R.D.L., Pasquini, C., Loos, S., Chernev, P., Klingan, K., Kubella, P., Mohammadi, M.R., González-Flores, D., and Dau, H., Energy Environ. Sci 11, 2476 (2018).CrossRefGoogle Scholar
Görlin, M., Chernev, P., Araujo, F.J., Reier, T., Dresp, S., Paul, B., Krähnert, R., Dau, H., and Strasser, P., J. Am. Chem. Soc. 138, 5603 (2016).CrossRefGoogle Scholar
Hunter, B.M., Thompson, N.B., Müller, A.M., Rossman, G.R., Hill, M.G., Winkler, J.R., and Gray, H.B., Joule 2, 747 (2018).CrossRefGoogle Scholar
Hunter, B.M., Hieringer, W., Winkler, J.R., Gray, H.B., and , A.M., Energy Environ. Sci. 9, 1734 (2016).CrossRefGoogle Scholar
Xiao, H., Shin, H., and Goddard, W.A. III, Proc. Natl. Acad. USA 115, 5872 (2018).CrossRefGoogle Scholar
Goldsmith, Z.K., Harshan, A.K., Gerken, J.B., Vörös, M., Galli, G., Stahl, S.S., and Hammes-Schiffer, S., Proc. Natl. Acad. USA 114, 3050 (2017).CrossRefGoogle Scholar
Bode, H., Dehmelt, K., and Witte, J., Electrochim. Acta 11, 1079 (1966).CrossRefGoogle Scholar
Hall, D.S., Lockwood, D.J., Bock, C., and MacDougall, B.R., Proc. R. Soc. A 471, 20140792 (2014).CrossRefGoogle Scholar
Gourrier, L., Deabate, S., Michel, T., Paillet, M., Hermet, P., Bantignies, J.-L., and Henn, F., J. Phys. Chem. C 115, 15067 (2011).CrossRefGoogle Scholar
Yu, J., Liu, J., Clearfield, A., Sims, J.E., Speiegle, M.T., Suib, S.L., and Sun, L., Inorg. Chem 55, 14021 (2016).Google Scholar
Smith, R.D.L., Prévot, M.S., Fagan, R.D., Zhang, Z., Sedach, P.A., Siu, M.K.J., Trudel, S., and Berlinguette, C.P., Science 340, 60 (2013).CrossRefGoogle Scholar
Smith, R.D.L., Prévot, M.S., Fagan, R.D., Trudel, S., and Berlinguette, C.P., J. Am. Chem. Soc. 135, 11580 (2013).CrossRefGoogle Scholar
Gražulis, S., Chateigner, D., Downs, R.T., Yokochi, A.F.T., Quiró, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A., J. Appl. Cryst 42, 726 (2009).CrossRefGoogle Scholar
Greenwell, H.C., Jones, W., Rugen-Hankey, S.L., Holliman, P.J., and Thompson, R.L., Green Chem. 12, 688 (2010).CrossRefGoogle Scholar
Deacon, G.B. and Phillips, R.J., Coord. Chem. Rev. 33, 227 (1980).CrossRefGoogle Scholar
Deacon, G.B., Huber, F., and Phillips, R.J., Inorganica Chim. Acta 104, 41 (1985).CrossRefGoogle Scholar
Sutton, C.C.R., da Silva, G., and Franks, G. V., Chem. A Eur. J. 21, 6801 (2015).CrossRefGoogle Scholar