Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T12:01:40.525Z Has data issue: false hasContentIssue false

Evidence of selective cation transport through sub-2 nm single-walled carbon nanotubes

Published online by Cambridge University Press:  10 May 2016

Khadija Yazda
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
Saïd Tahir
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
Thierry Michel
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
François Henn
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
Vincent Jourdain*
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
*
Get access

Abstract

The electrophoretic transport of ions through single walled carbon nanotubes (SWCNTs) of diameters between 1.2 and 1.8 nm was studied for different monovalent chloride salts using microfluidic devices incorporating either a single or few SWCNTs in parallel. The ionic conductance was found to be about one order of magnitude higher than would be expected from simple bulk electrophoresis without any surface effect. Importantly, the ionic conductance measured for different cations did not scale with their bulk electrophoretic mobility thus indicating a selective cation transport through these sub-2 nm SWCNTs. The transport of Na+ was notably found to be favored in comparison to that of Li+, K+ and Cs+. These results highlight the influence of steric and surface effects induced by the nano-confinement on the transport of ions through sub-2 nm SWCNTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Corry, B., J. Phys. Chem. B 112, 14271434 (2008).Google Scholar
Beau, T. A., Journal of Chemical Physics 135, 044516 (2011).Google Scholar
Liu, H., He, J., Tang, J., Liu, H., Pang, P., Cao, D., Krstic, P., Joseph, S., Lindsay, S. and Nuckolls, C., Science 327, 64 (2010).CrossRefGoogle Scholar
Liu, L., Yang, C., Zhao, K., Li, J. and Wu, H. C., Nat. Comm. 4, 2989 (2013).Google Scholar
Geng, J., Kim, K., Zhang, J., Escalada, A., Tunuguntla, R., Comolli, L. R., Allen, F. I., Shnyrova, A. V., Cho, K. R., Munoz, D., Wang, Y. M., Grigoropoulos, C. P., Ajo-Franklin, C. M., Frolov, V. A. and Noy, A., Nature 514, 612 (2014).Google Scholar
Lee, C. Y., Choi, W., Han, J. and Strano, M. S., Science 329, 1320 (2010).CrossRefGoogle Scholar
Choi, W., Ulissi, Z. W., Shimizu, S. F., Bellisario, D. O., Ellison, M. D. and Strano, M. S., Nat. Comm. 4, 2397 (2013).Google Scholar
Joseph, S., Mashl, R. J., Jakobsson, E. and Aluru, N. R., Nano Lett. 3, 1399 (2003).Google Scholar
Yang, L. and Garde, S., J. Chem. Phys. 126, 084706 (2007).Google Scholar
Fornasiero, F., Bin In, J., Kim, S., Park, H. G., Wang, Y., Grigoropoulos, C. P., Noy, A. and Bakajin, O., Langmuir 26, 14848 (2010).Google Scholar
Jain, T., Rasera, B., Guerrero, R. Ricardo Jose S., Boutilier, M., Hern, S., Idrobo, J. and Karnik, R., Nature Nanotechnology 10, 10531058 (2015).Google Scholar
Zhang, D., Yang, J., Yang, F., Li, R., Li, M., Ji, D. and Li, Y., Nanoscale 7, 10719 (2015).Google Scholar
Satheesan Babu, C. and Lim, C., J. Phys. Chem. B 103, 7958 (1999).Google Scholar