Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T01:36:41.024Z Has data issue: false hasContentIssue false

Evaluation Residual Moisture in Lithium-Ion Battery Electrodes and Its Effect on Electrode Performance

Published online by Cambridge University Press:  11 January 2016

Jianlin Li*
Affiliation:
Energy and Transportation Science Division, Oak Ridge National Laboratory, TN 37831, USA
Claus Daniel
Affiliation:
Energy and Transportation Science Division, Oak Ridge National Laboratory, TN 37831, USA Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, U.S.A.
Seong Jin An
Affiliation:
Energy and Transportation Science Division, Oak Ridge National Laboratory, TN 37831, USA Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, U.S.A.
David Wood
Affiliation:
Energy and Transportation Science Division, Oak Ridge National Laboratory, TN 37831, USA Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, U.S.A.
*
*Corresponding author: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi0.5Mn0.3Co0.2O2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. It has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

References

REFERENCES

Li, J.; Daniel, C.; Wood, D. Journal of Power Sources 2011, 196, 2452.CrossRefGoogle Scholar
Wood, D. L. III; Li, J.; Daniel, C. Journal of Power Sources 2015, 275, 234.Google Scholar
Lim, S.; Kim, S.; Ahn, K. H.; Lee, S. J. Journal of Power Sources 2015, 299, 221.CrossRefGoogle Scholar
Loeffler, N.; von Zamory, J.; Laszczynski, N.; Doberdo, I.; Kim, G.-T.; Passerini, S. Journal of Power Sources 2014, 248, 915.Google Scholar
Doberdò, I.; Löffler, N.; Laszczynski, N.; Cericola, D.; Penazzi, N.; Bodoardo, S.; Kim, G.-T.; Passerini, S. Journal of Power Sources 2014, 248, 1000.CrossRefGoogle Scholar
ÇEtinel, F.; Bauer, W. Bull Mater Sci 2014, 37, 1685.Google Scholar
Li, J.; Armstrong, B.; Kiggans, J.; Daniel, C.; Wood, D III. Langmuir 2012, 28, 3783.Google Scholar
Li, J.; Klöpsch, R.; Nowak, S.; Kunze, M.; Winter, M.; Passerini, S. Journal of Power Sources 2011, 196, 7687.Google Scholar
Zhong, H.; Sun, M.; Li, Y.; He, J.; Yang, J.; Zhang, L. Journal of Solid State Electrochemistry 2015, 1.Google Scholar
Li, J.; Armstrong, B. L.; Daniel, C.; Kiggans, J.; Wood, D. L. IiiJournal of Colloid and Interface Science 2013, 405, 118.Google Scholar
Guerfi, A.; Kaneko, M.; Petitclerc, M.; Mori, M.; Zaghib, K. Journal of Power Sources 2007, 163, 1047.Google Scholar
Li, C. C.; Lee, J. T.; Peng, X. W. Journal of the Electrochemical Society 2006, 153, A809.Google Scholar
Lee, J.-T.; Chu, Y.-J.; Peng, X.-W.; Wang, F.-M.; Yang, C.-R.; Li, C.-C. Journal of Power Sources 2007, 173, 985.Google Scholar
Wu, Q.; Ha, S.; Prakash, J.; Dees, D. W.; Lu, W. Electrochimica Acta 2013, 114, 1.Google Scholar
Li, C.-C.; Wang, Y.-W. Journal of Power Sources 2013, 227, 204.Google Scholar
Fergus, J. W. Journal of Power Sources 2010, 195, 939.Google Scholar
Loeffler, N.; Kopel, T.; Kim, G.-T.; Passerini, S. Journal of the Electrochemical Society 2015, 162, A2692.Google Scholar
Li, C. C.; Peng, X. W.; Lee, J. T.; Wang, F. M. Journal of the Electrochemical Society 2010, 157, A517.Google Scholar
Porcher, W.; Lestriez, B.; Jouanneau, S.; Guyomard, D. Journal of Power Sources 2010, 195, 2835.CrossRefGoogle Scholar
Li, J.; Armstrong, B. L.; Kiggans, J.; Daniel, C.; Wood, D. L. Journal of the Electrochemical Society 2013, 160, A201.Google Scholar
Li, J.; Rulison, C.; Kiggans, J.; Daniel, C.; Wood, D. L III. J. Electrochem. Soc. 2012, 159, A1152.Google Scholar
Zhang, X.; Jiang, W. J.; Zhu, X. P.; Mauger, A.; Qilu, ; Julien, C. M.Journal of Power Sources 2011, 196, 5102.Google Scholar
Zaghib, K.; Dontigny, M.; Charest, P.; Labrecque, J. F.; Guerfi, A.; Kopec, M.; Mauger, A.; Gendron, F.; Julien, C. M. Journal of Power Sources 2008, 185, 698.CrossRefGoogle Scholar
Burrell, A. K., “Enabling High-Energy/Voltage Lithium-Ion Cells for Transportation Applications,” DOE Annual Merit Review, Crystal City, VA, June 8-12, 2015.Google Scholar
Daniel, C., and Mike, Wixom, “Transformational electrode drying process”, ORNL/TM-2012/617, DOI:10.2172/1060885CrossRefGoogle Scholar