Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T02:31:00.485Z Has data issue: false hasContentIssue false

Europium Oxide-Hematite Magnetic CeramicNanoparticles

Published online by Cambridge University Press:  21 December 2015

Monica Sorescu*
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282, USA
Lucian Diamandescu
Affiliation:
National Institute of Materials Physics, P.O. Box MG-7, 077125 Bucharest-Magurele, Romania
John DiGnazio
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282, USA
Tianhong Xu
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282, USA FlexEl, LLC, 387 Technology Drive, College Park, MD 20742, USA
*
Get access

Abstract

Nanoparticle system with the compositionxEu2O3-(1-x)α-Fe2O3 (x= 0.1 and 0.5) was successfully synthesized by mechanochemicalactivation of Eu2O3 andα-Fe2O3 mixtures for 0-12 hours of ball millingtime. The study is of relevance to catalysis, biomedical, sensing andenergy-related applications. 57Fe and 151EuMössbauer spectroscopy were used to investigate the phase evolution,solid solution formation and hyperfine parameters ofxEu2O3-(1-x)α-Fe2O3nanoparticle system under the mechanochemical activation process. The57Fe Mössbauer studies showed that the spectrum of the ballmilled samples evolved from a sextet for hematite to sextets and a doublet uponduration of the milling process with europium oxide. This indicated theformation of the EuFeO3 perovskite for large x values and longmilling times. The 151Eu Mössbauer investigations showedthat the isomer shift decreased with increasing milling time for all molarconcentrations employed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, G.X., Gou, X.L., Horvat, J., Park, J., J. Phys. Chem. C 112, 15220 (2008).CrossRefGoogle Scholar
Raffaella, B., Etienne, S., Cinzia, G., Fabia, G., Mar, G.H., Miguel, A.G., Roberto, C., Pantaleo, D.C., Phys. Chem. Chem. Phys. 11, 3680 (2009).Google Scholar
Krishnamoorthy, S., Rivas, J.A., Amiridis, M.D., J. Catal. 193, 264 (2000).Google Scholar
Sorescu, M., Diamandescu, L., Tomescu, A., Tarabasanu-Mihaila, D., Teodorescu, V., Mater. Chem. Phys. 107, 127 (2008).Google Scholar
Seifu, D., Takacs, L., Kebede, A., J. Magn. Magn. Mater. 302, 479 (2006).Google Scholar
Ristic, M., Popovic, S., Czako-Nagy, I., Music, S., Mater. Lett. 27, 337 (1996).Google Scholar
Sorescu, M., Xu, T.H., Diamandescu, L., J. Mater. Sci. 46, 2350 (2011).Google Scholar
Sorescu, M., Xu, T.H., Diamandescu, L., Hileman, D., Hyper. Interact. 199, 365 (2011).Google Scholar
Sorescu, M., Xu, T.H., Burnett, J.D., Aitken, J.A., J. Mater. Sci. 46, 6709 (2011).Google Scholar
Sorescu, M., Xu, T.H., Diamandescu, L., Mater. Character. 61, 1103 (2010).Google Scholar