Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T22:34:42.897Z Has data issue: false hasContentIssue false

Epitaxial integration of TiO2 with Si(100) through a novel approach of oxidation of TiN/Si(100) epitaxial heterostructure

Published online by Cambridge University Press:  20 June 2016

A. Moatti*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, EB-1, Raleigh 27695-7906, NC, USA.
R. Bayati
Affiliation:
Intel Corporation, IMO-RA, Hillsboro, OR 97124, USA.
S. Singamaneni
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, EB-1, Raleigh 27695-7906, NC, USA. Department of Physics, University of Texas at El Paso, El Paso, Texas 79958, USA
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, EB-1, Raleigh 27695-7906, NC, USA.
*
Get access

Abstract

In this study, we provide a novel approach to the epitaxial integration of TiO2 with Si(100) and investigate the defect mediated ferromagnetism in TiO2 structure. Epitaxial TiO2 thin films were grown on a TiN/Si(100) epitaxial heterostructure through oxidation of TiN where a single crystalline rutile-TiO2 (r-TiO2) with a [110] out-of-plane orientation was obtained. The epitaxial relationship is determined to be TiO2(1 $\bar 1$ 0)||TiN(100) and TiO2(110)||TiN(110). We rationalized this epitaxy using the domain matching epitaxy paradigm. First TiN is grown epitaxially on Si(100). Subsequently, TiN/Si(100) samples are oxidized to create r-TiO2/TiN/Si(100) epitaxial heterostructures. The details of the mechanism behind the oxidation of single crystalline TiN to TiO2 was investigated using atomic scale high resolution electron microscopy techniques. Defects introduced to the heterostructure during oxidation caused ferromagnetism in TiO2 thin film which is reversible and can be tuned by controlling oxygen partial pressure. The source of magnetization is correlated with the presence of oxygen vacancy leading to introduction of two localized states; hybrid and polaron among neighboring Ti atoms, and titanium vacancy providing four holes to form molecular oxygen. We present structure property correlations and its impact on the next generation solid state devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayati, MR, Joshi, S, Narayan, RJ, Narayan, J. J.Mater.Res. 2013;28:1669.CrossRefGoogle Scholar
Esaka, F, Furuya, K, Shimada, H, Imamura, M, Matsubayashi, N, Sato, H et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1997;15:2521.CrossRefGoogle Scholar
Torres, J, Perry, C, Bransfield, SJ, Fairbrother, DH. The Journal of Physical Chemistry B 2003;107:5558.CrossRefGoogle Scholar
Diebold, U. Surface science reports 2003;48:53.CrossRefGoogle Scholar
Colombo, L, Seidel, T. Solid State Technol. 2004;47:112.Google Scholar
Choi, Y, Yamamoto, S, Abe, H, Itoh, H. Surf.Sci. 2002;499:203.CrossRefGoogle Scholar
Bayati, M, Molaei, R, Budai, J, Narayan, R, Narayan, J. J.Appl.Phys. 2013;114:044314.CrossRefGoogle Scholar
Hong, NH, Sakai, J, Poirot, N, Brizé, V. Physical Review B 2006;73:132404.CrossRefGoogle Scholar
Venkatesan, M, Fitzgerald, C, Coey, J. Nature 2004;430:630.CrossRefGoogle Scholar
Yoon, SD, Chen, Y, Yang, A, Goodrich, TL, Zuo, X, Arena, DA et al. Journal of Physics: Condensed Matter 2006;18:L355.Google Scholar
Hong, NH, Sakai, J, Brizé, V. Journal of Physics: Condensed Matter 2007;19:036219.Google Scholar
Chen, H, Lu, F. Journal of Vacuum Science & Technology A 2005;23:1006.CrossRefGoogle Scholar
Desmaison, J, Lefort, P, Billy, M. Oxidation Metals 1979;13:505.CrossRefGoogle Scholar
Groenland, A, Brunets, I, Boogaard, A, Aarnink, A, Kovalgin, A, Schmitz, J. 2008 Google Scholar
Saha, NC, Tompkins, HG. J.Appl.Phys. 1992;72:3072.CrossRefGoogle Scholar
Tompkins, HG. J.Appl.Phys. 1991;70:3876.CrossRefGoogle Scholar
Yin, Y, Hang, L, Zhang, S, Bui, X. Thin Solid Films 2007;515:2829.CrossRefGoogle Scholar
Yoshiya, M, Tanaka, I, Kaneko, K, Adachi, H. Journal of Physics: Condensed Matter 1999;11:3217.Google Scholar
Zimmermann, J, Finnis, MW, Ciacchi, LC. J.Chem.Phys. 2009;130:134714.CrossRefGoogle Scholar
Ciacchi, LC. International Journal of Materials Research 2007;98:708.CrossRefGoogle Scholar
Moatti, A, Bayati, R, Narayan, J. Acta Materialia 2016;103:502.CrossRefGoogle Scholar
Narayan, J, Larson, B. J.Appl.Phys. 2003;93:278.CrossRefGoogle Scholar
Chen, H, Lu, F. Journal of Vacuum Science & Technology A 2005;23:1006.CrossRefGoogle Scholar
Deschaux-Beaume, F, Cutard, T, Fréty, N, Levaillant, C. J Am Ceram Soc 2002;85:1860.CrossRefGoogle Scholar
Shao, B, He, Y, Feng, M, Lu, Y, Zuo, X. J.Appl.Phys. 2014;115:17A915.CrossRefGoogle Scholar
Lin, C, Shin, D, Demkov, AA. J.Appl.Phys. 2015;117:225703.CrossRefGoogle Scholar
Chen, H, Dawson, JA. Physical Review Applied 2015;3:064011.CrossRefGoogle Scholar