Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T04:30:57.415Z Has data issue: false hasContentIssue false

Environmental Resistant Coatings for High Temperature Mo and Nb Silicide Alloys

Published online by Cambridge University Press:  30 January 2017

J.H. Perepezko*
Affiliation:
University of Wisconsin-Madison, Department of Materials Science and Engineering 1509 University Ave., Madison WI 53706
*
Get access

Abstract

The challenges of a high temperature environment impose severe material performance constraints in terms of melting point, oxidation resistance and structural functionality. In metallic systems the multiphase microstructures that can be developed in the Mo-Si-B system and Nb silicide alloys offer useful options for high temperature applications. Since the alloy compositions that exhibit the lowest oxidation rate will most likely not yield optimum mechanical properties performance, it is important to develop robust and compatible oxidation resistant coatings. An effective strategy to achieve the necessary environmental resistance is based upon the use of an integrated Mo-Si-B based coating that is applied by a pack cementation process to develop an aluminoborosilica surface and in-situ diffusion barriers with self-healing characteristics for enhanced oxidation resistance. The environmental performance requires resistance not only to high temperature oxidation, but also resistance to water vapor, CMAS (calcia-magnesia-aluminosilica) attack, hot corrosion and thermal cycling. Under these extended environmental conditions the Mo-Si-B based coating exhibits robust performance.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Perepezko, J.H., Science, 326,1068 (2009)Google Scholar
Fleischer, R. L., J. Met. 37, 16 (1985).Google Scholar
Naslain, R., Compos. Sci. Technol. 64, 155 (2004).Google Scholar
Buckman, R. W., in Alloying, Walter, J. L., Jackson, M. R., Sims, C.T., Eds., pp. 419445 (ASM, Metals Park, OH, 1988).Google Scholar
Fu, C. L., Wang, X., Philos. Mag. Lett. 80, 683 (2000).CrossRefGoogle Scholar
Medvedeva, N. I., Gornostyrev, Y. N., Freeman, A. J., Phys Rev. Lett. 94, 136402 (2005).Google Scholar
Sakidja, R., Perepezko, J.H., Kim, S. and Sekido, N., Acta Mater. 56, 5223 (2008).Google Scholar
Sakidja, R., Park, J. S., Hamann, J. and Perepezko, J. H., Scripta Mater, 53, 723 (2005),Google Scholar
Akinc, M., Meyer, M. K., Kramer, M. J., Thom, A. J., Huebsch, J. J. and Cook, B., Mater. Sci. Eng. 261, 16 (1999).Google Scholar
Bewlay, B. W., Jackson, M. R., Zhao, J.-C., Subramanian, P. R., Mendiratta, M. G. and Lewandowski, J. J., MRS Bull. 28, 622 (2003).CrossRefGoogle Scholar
Bewlay, B. P., Jackson, M. R., Zhao, J.-C., Subramanian, P. R., Metall. Mater. Trans. A 34, 2043 (2003).Google Scholar
Shah, D.M., Berczik, D., Anton, D.L. and Hecht, R., Mater. Sci. Eng. A155, 45 (1992).Google Scholar
Perepezko, J. H., Park, J. S. and Sakidja, R., U S Patent 7,005,191 (2006).Google Scholar
Levine, S. R. and Caves, R. M., J. Electrochem. Soc. 121, 1051 (1974).Google Scholar
Mueller, A., Wang, G., Rapp, R. A. and Courtright, E. L. and Kircher, T. A., Mater. Sci. Eng. A155, 199 (1992).CrossRefGoogle Scholar
Su, L.F., Jia, L.N., Weng, J.F., Hong, Z., Zhou, C.G. and Zhang, H., Corros. Sci. 88, 460 (2014).Google Scholar
Perepezko, J.H. and Sakidja, R., JOM ,65, 307 (2012)Google Scholar
Cockram, B. V. and Rapp, R. A., Metall. Mater. Trans. 26A, 777 (1995).Google Scholar
Berczik, D. M., United States Patent 5,595,616 (1997) and 5,693,156(1997).Google Scholar
Bansal, N.P. and Doremus, R. H. (Eds.), in Handbook of Glass Properties, Academic Press: Orlando ( 1986).Google Scholar
Dimiduk, D. M. and Perepezko, J. H., MRS Bull. 28 (9), 639 (2003).Google Scholar
Kirkaldy, J.S. and Young, D.J., Diffusion in the Condensed State., (Institute of Metals London, UK) (1987).Google Scholar
Sakidja, R., Park, J. S., Hamann, J. and Perepezko, J. H., Scripta Mater. 53, 723 (2005).CrossRefGoogle Scholar
Helmick, D.A., Meier, G.H. and Petit, F.S., Metall. Mat. Trans. A, 36, 3371 (2005), 3371.Google Scholar
Perepezko, J. H., da Silva Bassani, M. H., Park, J. S., Edelstein, A. S. and Everett, R. K., Mater. Sci. Eng. A, 195, 1 (1995).Google Scholar
Sakidja, R., Rioult, F., Werner, J. and Perepezko, J.H., Scripta Mater. 55, 903 (2006).Google Scholar
Perepezko, J.H. and Sakidja, R., Adv. Eng. Mater. 11, 892 (2009).Google Scholar
Meyer, M.K., Thom, A. J. and Akinc, M., Intermetallics, 7, 153 (1999).Google Scholar
Perepezko, J.H. and Sakidja, R., JOM, 65, 307 (2013).Google Scholar
Downs, I.P., Perepezko, J.H., Sakidja, R., and Choi, S.R., Surface Coat Tech. 239, 138 (2014).Google Scholar
Su, L.F., Jia, L.N., Weng, J.F., Hong, Z., Zhou, C.G., Zhang, H., Corros. Sci. 88, 460 (2014).Google Scholar
Su, L.F., Lu-Steffes, O., Zhang, H. and Perepezko, J.H., Appl. Surf. Sci. 337, 38 (2015).Google Scholar
Kircher, T.A. and Courtright, E.L., Mater. Sci. Eng. A, 155, 67 (1992).Google Scholar
Habib, K., Optics Laser Tech. 37, 509 (2005).Google Scholar
Bewlay, B.P., Subramanian, P.R., Rigney, J.D., DiDomizio, R. and Dheeradhada, V.S., US Patent, 8,247,085 B2, (2012).Google Scholar
Bewlay, B.P., Jackson, M.R. and Lipsitt, H.A., Metall. Mater. Trans. A, 27, 3801 (1996).Google Scholar
Son, K.H., Yoon, J.K., Han, J.H., Kim, G.H., Doh, J.M. and Lee, S.R., Jnl. Alloys Compounds, 395, 185 (2005).Google Scholar
Cockeram, B. and Rapp, R.A., Oxid. Met. 45, 375 (1996).Google Scholar
Ritt, P.J., Williams, P.A., Splinter, S.C. and Perepezko, J.H., Jnl. Europ. Ceram. Soc. 34,3521 (2013).Google Scholar
Ritt, P.J., Sakidja, R., and Perepezko, J.H., Surface Coat Tech. 206, 4166 (2012).Google Scholar