Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T21:59:52.927Z Has data issue: false hasContentIssue false

Enhanced Nanoparticle Removal Using Surfactants

Published online by Cambridge University Press:  02 May 2016

Michael L. Free*
Affiliation:
University of Utah Department of Metallurgical Engineering, 135 S. 1460 E., Salt Lake City, UT 84112, U.S.A.
*
Get access

Abstract

Nanoparticles are used in chemical mechanical planarization for semiconductor manufacturing as well as in other precision manufacturing operations. Particles used in processing need to be removed from surfaces in order to enhance yields. Nanoparticles are difficult to remove from surfaces during cleaning due to the high van der Waals attractive forces between particles and surfaces relative to the low fluid drag forces that are used for typical removal methods. Ionic surfactant molecules can adsorb on particles and surfaces to create an electrostatic repulsion between particles and surfaces as well as provide a steric barrier to mitigate adsorption and adhesion. The effectiveness of the surfactant in enhancing particle removal is related to surfactant properties, and it can be correlated with and modeled relative to the critical micelle concentration of the surfactant. The general approach for modeling will be discussed, and the model will be compared with particle removal data.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, F., Busnaina, A. and Ahmadi, G., J. Electrochem. Soc. 146, 2665 (1999).Google Scholar
Vos, R., Xu, K., Lux, M., Fyen, W., Singh, R., Chen, Z., Mertens, P., Hatcher, Z. and Heyns, M., Diffusion Defect Data Pt. B: Solid State Phenomena 76, 263 (2000).Google Scholar
Jeon, J. S. and Raghavan, S., (Proc. 39th Annual Technical Meeting IEST, Inst. of Env. Sci. and Techn., Mount Prospect, IL, 1993) pp. 268273.Google Scholar
Fury, M. A., Solid State Technol. 38(4), 47 (1995).Google Scholar
Meyers, T. L., Fury, M. A. and Krusell, W. C., Solid State Technol. 38(10), 59 (1995).Google Scholar
Martinez, M. A., Solid State Technol. 37(5), 26 (1994).Google Scholar
Patrick, W. J., Guthrie, W. L., Standley, C. L. and Schiable, P. M., J. Electrochem. Soc. 138, 1778 (1991).Google Scholar
Iqbal, A., Roy, S. R., Shinn, G. B., Raghavan, S., Shah, R. and Peterman, S., Microcontamination 12, 45 (1994).Google Scholar
Hayashi, Y., Sakurai, M., Nakajima, T., Hayashi, K., Sakaki, S., Chicaki, S. and Kunio, T., Jpn. J. Appl. Phys. 34, 1037 (1995).Google Scholar
Kaufman, F. B., Thompson, D. B., Broadie, R. E., Jaso, M. A., Guthrie, W. L., Pearson, D. J. and Small, M. B., J. Electrochem. Soc. 138, 3460 (1991).Google Scholar
Itano, M., Kern, F. W. Jr., Miyashita, M. and Ohmi, T., IEEE Trans. Semicond. Manuf. 6, 258 (1993).CrossRefGoogle Scholar
Riley, D. J. and Carbonell, R. G., J. Colloid Interface Sci. 158, 259 (1993).Google Scholar
Roy, S. R., Ali, I., Shinn, G., Furusawa, N., Shah, R., Peterman, S., Witt, K., Eastman, S. and Kumar, P., J. Electrochem. Soc. 142, 216 (1995).Google Scholar
Itano, M., Kezuka, T., Ishii, M., Unemoto, T. and Kubo, M., J. Electrochem. Soc. 142, 971 (1995).Google Scholar
Ein-Eli, Y., Abelev, E., Rabkin, E. and Starovetsky, D., J. Electrochem. Soc. 150, C646 (2003).Google Scholar
Hu, T. C., Chiu, S. Y., Dai, B. T., Tsai, M. S., Tung, I. -C. and Feng, M. S., Mater. Chem. Phys. 61, 169 (1999).Google Scholar
Rosen, M. J. and Kujappu, Joy T., Surfactants and Interfacial Phenomena, 4 th Edition, John Wiley and Sons, Inc., New York, NY, (2012).Google Scholar
Heimenz, P. C. and Rajagopalan, R., Principles of Colloid and Surface Chemistry, 3 rd Edition, Marcel Dekker, Inc., New York, NY (1997).Google Scholar
Free, M. L., Wang, W. and Ryu, D. Y., Corrosion 60, 837 (2004).Google Scholar
Free, M. L., Corrosion 58, 1025 (2002).Google Scholar
Zemaitis, J. F., Clark, D. M., Rafal, M., and Scrivner, N. C., Handbook of Aqueous Electrolyte Thermodynamics, AIChE, New York ( 1986).Google Scholar
Horn, R. G., J. Am. Ceram. Soc. 73, 1117 (1990).Google Scholar
Yaminsky, V. V., Ninham, B. W., Christenson, H. K. and Pashley, R. M., Langmuir 12, 1936 (1996).Google Scholar
Ducker, W. A., Xu, Z., Clarke, D. R. and Israelachvili, J. N., J. Am. Ceram. Soc. 77, 437 (1994).Google Scholar
Israelachvili, J. N., Intermolecular and Surface Forces, 2nd edition, Academic Press, San Diego, CA (1992).Google Scholar
Free, M. L. and Shah, D. O., “The Role of Cetyl Pyridinium Chloride in Reducing Adhesion Forces Between Alumina Particles and Quartz Surfaces,” in: Particles on Surfaces 5 & 6: Detection, Adhesion, and Removal, ed. Mittal, K. L., (CRC Press, Boca Raton, FL, 1999) pp. 95106.Google Scholar
Freitas, A. M. and Sharma, M. M., Langmuir 15, 2466 (1999).Google Scholar
Vos, R., Xu, K., Vereecke, G., Holsteyns, F., Fyen, W., Wang, L., Lauerhaas, J., Hoffman, M., Hackett, T., Mertens, P. and Heyns, M., “Advanced Wet Cleaning of Sub-micrometer Sized Particles,” in: Particles on Surfaces 8: Detection, Adhesion, and Removal, ed. Mittal, K. L., (CRC Press, Boca Raton, FL, 2003) pp. 255270.Google Scholar
Free, M. L., “Prediction of Particle Removal Using Surfactants,” in: Particles on Surfaces 9: Detection, Adhesion, and Removal, ed. Mittal, K. L., (CRC Press, Boca Raton, FL, 2006) pp. 317328.Google Scholar
Free, M. L. and Shah, D. O., “Enhancement of Particle Removal and Modification of Interfacial Phenomena Using Surfactants,” in: Particles on Surfaces 7: Detection, Adhesion, and Removal, ed. Mittal, K. L., (CRC Press, Boca Raton, FL, 2002) pp. 405418.Google Scholar
Free, M. L. and Shah, D. O., Micro 16, 29 (May 1998).Google Scholar
McNamee, C. E., Tsujii, Y., Ohshima, H. and Matsumoto, M., Langmuir 20, 1953 (2004).Google Scholar