Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T20:02:32.206Z Has data issue: false hasContentIssue false

Emission, Defects and Structure of ZnO Nanocrystals obtained by Electrochemical method

Published online by Cambridge University Press:  11 May 2017

Tetyana Torchynska*
Affiliation:
Instituto Politécnico Nacional, ESFM, México D.F.07738, MEXICO
Brahim El Filali
Affiliation:
Instituto Politécnico Nacional, UPIITA, México D.F.07320, MEXICO
Georgiy Polupan
Affiliation:
Instituto Politécnico Nacional, ESIME, México D.F.07738, MEXICO
Lyudmula Shcherbyna
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics at NASU, Kyiv, 03028, UKRAINE
*
Get access

Abstract

The impact of different annealing temperatures on the crystal structure, emission and radiative defects in ZnO nanocrystals (NCs) has been investigated by means of the scanning electron microscopy (SEM), Energy dispersion spectroscopy (EDS), X-ray diffraction (XRD) and photoluminescence (PL) techniques. ZnO NCs were prepared by the anodization of zinc sheets in an electrolyte and thermal annealed at the various temperatures: 200, 240, 280, 320, 360 and 400°C for two hours in ambient air. The XRD study indicates that ZnO NCs are characterized by the hexagonal wurtzite structure.

The study of annealing temperature impact on the morphology of ZnO NCs has shown that the NC size enlarges and the film crystallinity improves with increasing annealing temperatures from 200°C up to 400°C. But in the temperature range of 360-400oC the dissolution of oxygen atoms raises essentially in ZnO NC films as it follows from EDS data. Simultaneously, the near band edge (NBE) emission intensity falls down, XRD parameters of ZnO NCs change and the intensity of defect related orange and green PL bands increases owing to increasing the defect concentrations. The optimal temperatures for the ZnO NC oxidation, together with keeping the high NBE emission intensity, are estimated as 360 °C. The nature of native defects responsible for orange and green emissions in ZnO NCs has been discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T., Prog. Mater Sci. 50, 293 (2005).Google Scholar
Kashif, M., Hashim, U., Ali, M.E., Ali, S.M.U., Rusop, M., et al. J. Nanomater. 2012, 1 (2012).Google Scholar
Lin, H.B., Cao, M.S., Zhao, Q.L., Shi, X.L., Wang, D.W., Scr. Mater. 59, 780 (2008).Google Scholar
Desai, A., Haque, M., Sens. Actuators A134, 169 (2007).Google Scholar
Roy, V., Djurisic, A.B., Liu, H., Zhang, X.X., Leung, Y.H., Appl. Phys. Lett. 84, 756 (2004)Google Scholar
Benharrats, F., Zitouni, K., Kadri, A., Gil, B., Superlat. and Microstruct. 47, 592 (2010).Google Scholar
Torchynska, T. V., El Filali, B., J. Lumin. 149, 54 (2014).Google Scholar
Chou, H.-T., Hsu, H.-Ch., Solid-State Electron. 116, 15 (2016).Google Scholar
Horng, R.-H., Ou, S.-L., Huang, Ch.-Y., Wu, Ch.-I, Thin Solid Films, 584, 1 (2015).Google Scholar
Bouhssira, N., Abed, S., Tomasella, E., Cellier, J., Mosbah, A., Aida, M.S., Jacquet, M., Appl. Surf. Sci. 252, 5594 (2006).Google Scholar
El Falali, B., Torchynska, T.V., Casas Espinola, J.L., J. Phys. Chem. Solids, 74, 431 (2013).Google Scholar
El Filali, B., Torchynska, T.V. and Diaz Cano, A.I., J. Lumin. 161, 25 (2015).Google Scholar
Torchynska, T.V., Diaz Cano, A.I., Khomenkova, L.Yu., Physica B. 340-342, 1113 (2003).Google Scholar
Torchynska, T.V., Palacios Gomez, J., Polupan, G.P., Becerril Espinoza, F.G., Garcia Borquez, A., Korsunskaya, N.E., Khomenkova, L.Yu., Appl. Surf. Sci. 167, 197 (2000).Google Scholar
JCPDS-International Centre for Diffraction Data, http://worldcat.org/identities/lccnn 78034812/ or http://comptech.compres.us/tools/jcpds, (JCPDS Data File No. 36-1451).Google Scholar
Sachin, S., Kshirsagar, D., Shaik, U. P., Ghana, M., Krishna, S., J. Lumin. 136, 26 (2013).Google Scholar
Malek, M.F., Mamat, M.H., Musa, M.Z., Khusaimi, Z., Sahdan, M.Z., Suriani, A.B., Ishak, A., Saurdi, I., Rahman, S.A., Rusop, M., J. Alloys and Compnd. 610, 575 (2014).Google Scholar
Djurisic, A. B., Ng, A.M.C., Chen, X.Y.. Prog. Quantum Electron. 34, 191 (2010).Google Scholar
Patra, M.K., Manzoor, K., Manoth, M., Vadera, S.P., J. Lumin. 128, 267 (2008).Google Scholar
Vlasenko, L.S., Watkins, G.D., Phys. Rev. B 71, 125210 (2005).Google Scholar
Reshchikov, M. A., Morkoc, H., Nemeth, B., Nause, J., Xie, J., Hertog, B., Osinsky, A., Physica B. 401402, 358 (2007).Google Scholar
Qiu, J., Li, X., He, W., Park, S.-J., Kim, H.-K., Hwang, Y.-H., Lee, J.-H., Kim, Y.-D., Nanotechnol. 20, 155603 (2009).Google Scholar
Janotti, A. and G Van de Walle, Ch., Rep. Prog. Phys. 72, 126501(2009).Google Scholar
Dingle, R., Phys. Rev. Lett. 23, 579 (1969)Google Scholar
Diaz Cano, A.I., El Filali, B., Torchynska, T.V., Casas Espinola, J.L., Physica E 51, 24 (2013).Google Scholar