Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T16:38:45.488Z Has data issue: false hasContentIssue false

Electrospinning Graphene – Retention of Anisotropy

Published online by Cambridge University Press:  01 June 2020

Qi Li
Affiliation:
Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China Present Address: College of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
Feng Yan
Affiliation:
Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
John Texter
Affiliation:
Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China Coatings Research Institute and School of Engineering, Eastern Michigan University, Ypsilanti, MI48197, USA
Get access

Abstract

Realization of the full potential of 2D nanosheet materials in energy storage and conversion devices requires heterogeneously structured electrodes having good electrical conductivity and large mean free paths for ion diffusion. Electrospinning of anisotropic objects usually obscures this anisotropy because of a large amount of carrier polymer typically required to form fibers. We demonstrate electrospinning of graphene with nearly quantitative retention of flake anisotropy to provide low to moderate density coatings of randomly oriented flakes having very large inter-flake mean free paths for ionic diffusion. Polyvinyl alcohol (PVA) is used as a carrier polymer and yields graphene anisotropy retention over an instability domain wherein electrospinning transitions to electrospraying. Graphene is deposited in polymer-encapsulated films at weight concentrations up to 50%, almost an order of magnitude higher than previously reported. Electrode applications will require at least partial replacement of PVA by electrically conducting polymers, and such polyelectrolytes should also suppress this electrospraying instability. We believe that large-scale electrospinning of graphene nanosheets will accelerate development of 2D materials in the fields of energy storage and conversion, catalysis, and tissue engineering.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gabardo, C. M., Zhu, Y. J., Soleymani, L., Moran-Mirabal, J. M., Adv. Funct. Mater. 2013, 23, 3030-3039 (2013).CrossRefGoogle Scholar
Tao, H. C., Fan, Q., Ma, T., Liu, S. Z., Gysling, H.,, Texter, J., Guo, F., Sun, Z. Y.. Prog. Mater. Sci.. 111, 100637 (2020).CrossRefGoogle Scholar
Tao, C. N., Gao, Y. N., Talreja, N., Guo, F., Texter, J., Yan, C., Sun, Z. Y., J. Mater. Chem. A 5, 7257-7284 (2017).CrossRefGoogle Scholar
Tao, C. N., Zhang, Y. Q., Gao, Y. N., Sun, Z. Y., Yan, C., Texter, J.,. Phys. Chem. Chem. Phys. 19, 921-960 (2017).CrossRefGoogle Scholar
Tucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H., Hofman, K. J., Eng. Fiber Fabr. 7, 63-77 (2012).Google Scholar
Li, D., Xia, Y., Y. Adv. Mater. 16, 1151-1170 (2004).CrossRefGoogle Scholar
Bao, Q.; Zhang, H.; Yang, J. X.; Wang, S. A.; Tang, D. Y.; Jose, R.; Ramakrishna, S.; Lim, C. T.; Loh, K. P. Adv. Funct. Mater. 20, 782-791 (2010).CrossRefGoogle Scholar
Das, S., Wajid, A. S., Bhattacharia, S. K., Wilting, M. D., Rivero, I. V., Green, M. J., J. Appl. Polym. Sci. 4040-4046 (2013).CrossRefGoogle Scholar
Khan, W.S., Asmatulu, R., Rodriguez, V., Ceylan, M., Int. J. Energy Res. 38, 20442051 (2014).CrossRefGoogle Scholar
Islam, M. S., Rahaman, M. S., Yeum, J. H., Carbohyd. Polym. 115, 69-77 (2015).CrossRefGoogle Scholar
Wang, C. Y., Wang, J., Zeng, L., Qiao, Z., Lio, X. C., Liu, H., Zhang, J., Ding, J. X.,. Molecules 24, 834 (2019).CrossRefGoogle ScholarPubMed
Ager, D., Vasantha, V. A., Crombez, R., Texter, J., ACS Nano 8, 11191-11205 (2014).CrossRefGoogle Scholar
England, D., Tambe, N., Texter, J., ACS Macro Lett. 1, 310-314 (2012).CrossRefGoogle Scholar
Texter, J., Polym. Prep. 53, 143-144 (2012).Google Scholar
Texter, J., Ager, D., Vasantha, V. A., Crombez, R., England, D., Ma, X. M., Maniglia, R., Tambe, N., Chem. Lett. 41, 1377-1379 (2012).CrossRefGoogle Scholar
Texter, J., Zhao, L., Xiao, P. W., Caballero, F. P., Han, B. H., Titirici, M. M., Carbon 112, 117-129 (2017).CrossRefGoogle Scholar
Ji, Y., Li, B, Q, Ge, S. R., Sokolov, J. C., Rafailovich, M. H., Langmuir 22, 1321-1328 (2006).CrossRefGoogle Scholar
Woo, Y. C., Tijing, L. D., Shim, W.-G., Choi, J.-S., Kim, S.-H., He, T., Drioli, E., Shon, H. K., J. Membrane Sci. 520, 99-110 (2016).CrossRefGoogle Scholar
Shin, Y. M., Hohman, M. M., Brenner, M. P., Rutledge, G. C., Polymer 42, 995-9967 (2001).Google Scholar
McKee, M. G., Wilkes, G. L., Colby, R. H., Long, T. E., Macromolecules 37, 1760-1767 (2004).CrossRefGoogle Scholar
Zhao, W., Yalcin, B., Cakmak, M., Synthetic Metals 203, 107-116 (2015).CrossRefGoogle Scholar
Pisuchpen, T., Keaw-on, N., Kitikulvarakorn, K., Kusonsong, S., Sritana-anant, Y., Supaphol, P., Hoven, V. P., Eur. Polym. J. 96, 452-462 (2017).CrossRefGoogle Scholar
Pawar, R. P., Ultra Chem. 11, 1-6 (2015).Google Scholar
Husain, O., Lau, W., Edirisinghe, M., Parhiskar, M., Mater. Sci. Eng. C 65, 240-250 (2016).CrossRefGoogle Scholar
Supplementary material: PDF

Li et al. supplementary material

Supplemental Information

Download Li et al. supplementary material(PDF)
PDF 1.6 MB