Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T21:50:02.913Z Has data issue: false hasContentIssue false

Electron Spin Resonance Investigations on Perovskite Solar Cell Materials Deposited on Glass Substrate

Published online by Cambridge University Press:  12 February 2018

C. L. Saiz
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, Texas79968, USA.
E. Castro
Affiliation:
Department of Chemistry, The University of Texas at El Paso, El Paso, Texas79968, USA.
L. M. Martinez
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, Texas79968, USA.
S. R. J. Hennadige
Affiliation:
Department of Chemistry, The University of Texas at El Paso, El Paso, Texas79968, USA.
L. Echegoyen
Affiliation:
Department of Chemistry, The University of Texas at El Paso, El Paso, Texas79968, USA.
S. R. Singamaneni*
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, Texas79968, USA.
*
Get access

Absrtact

In this article, we report low-temperature electron spin resonance (ESR) investigations carried out on solution processed three-layer inverted solar cell structures: PC61BM/CH3NH3PbI3/PEDOT:PSS/Glass, where PC61BM and PEDOT:PSS act as electron and hole transport layers, respectively. ESR measurements were conducted on ex-situ light (1 Sun) illuminated samples. We find two distinct ESR spectra. First ESR spectra resembles a typical powder pattern, associated with gx = gy = 4.2; gz = 9.2, found to be originated from Fe3+ extrinsic impurity located in the glass substrate. Second ESR spectra contains a broad (peak-to-peak line width ∼ 10 G) and intense ESR signal appearing at g = 2.008; and a weak, partly overlapped, but much narrower (peak-to-peak line width ∼ 4 G) ESR signal at g = 2.0022. Both sets of ESR spectra degrade in intensity upon light illumination. The latter two signals were found to stem from light-induced silicon dangling bonds and oxygen vacancies, respectively. Our controlled measurements confirm that these centers were generated during UV-ozone treatment of the glass substrate –a necessary step to be performed before PEDOT:PSS is spin coated. This work forms a significant step in understanding the light-induced- as well as extrinsic defects in perovskite solar cell materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Grätzel, M., Mhaisalkar, S., Sum, T. C.. Sci. 342, 344347 (2013).Google Scholar
Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.. Nat. Comm. 5, 57845791 (2014).Google Scholar
Hao, W., Chen, X., and Li, S.. J. Phys. Chem. C, 120, 2844828455, (2016).Google Scholar
Yang, Y. and You, J.. Nature 544, 155156 (2017).CrossRefGoogle Scholar
Jordan, Dirk C., Silverman, T. J., Wohlgemuth, J. H., Kurtz, S. R. and VanSant, K. T.. Prog. Photovolt: Res. Appl. 25, 318326 (2017).CrossRefGoogle Scholar
Yin, W-J, Shi, T., and Yan, Y.. Appl. Phys. Lett., 104, 063903063907 (2014).Google Scholar
Duan, H-S, Zhou, H., Chen, Q., Sun, P., Luo, S., Song, T-B, Bob, B. and Yang, Y.. Phys. Chem. Chem. Phys. 17, 112 (2014).CrossRefGoogle Scholar
deQuilettes, D. W., Vorpahl, S. M., Stranks, S. D., Nagaoka, H., Eperon, G. E., Ziffer, M. E., Snaith, H. J., Ginger, D. S.. Science 348, 683-686 (2015).Google Scholar
Lee, J-K, You, S., Jeon, S., Ryu, N-H, Park, K. H., Myung-Hoon, K., Kim, D. H., Kim, S. H., and Schiff, Eric A.. J. Appl. Phys. 118, 015501015507 (2015).CrossRefGoogle Scholar
Shkrob, I. A., and Marin, T. W.. J. Phys. Chem. Lett., 5, 10661071 (2014).CrossRefGoogle Scholar
Namatame, M., Yabusaki, M., Watanabe, T., Ogomi, Y., Hayase, S., and Marumoto, K.. Appl. Phys. Lett., 110, 123904123909 (2017).Google Scholar
Tian, C., Castro, E., Wang, T., Betancourt-Solis, G., Rodriguez, G., and Echegoyen, L.. ACS Appl. Mater. Interfaces, 8, 3142631432 (2016).Google Scholar
Tian, C., Kochiss, K., Castro, E., Betancourt-Solis, G., Hanb, H. and Echegoyen, L.. J. Mater. Chem. A. 5, 7326 (2017).CrossRefGoogle Scholar
Padlyak, B. V.. Current Topics in Biophysics, 33 (suppl A), 163170 (2010).Google Scholar
Even, J., Pedesseau, L., Jancu, J-M, and Katan, C.. J. Phys. Chem. Lett., 4, 29993005 (2013).CrossRefGoogle Scholar
Xue, P., Pei, D., Zheng, H., Li, W., Afanas’ev, V. V., Baklanov, M. R., de Marneffe c, J-F, Lin d, Y-H, H-SumFung, , Chend, C-chi, Nishi, Y, J. Leon Shohet. Thin Solid Films 616, 2326 (2016).Google Scholar
Fungura, F., Lindemann, W. R., Shinar, J., and Shinar, R.. Adv. Energy Mater., 7, 16014201601431 (2017).CrossRefGoogle Scholar
Anderson, S.., J. of Chem. Phys. 50, 2783 (1969).CrossRefGoogle Scholar
Bogomolova, L.D., Zhachkin, V.A., Pavlushkina, T.K. Glass Ceram. Vol. 72, Nos. 3. (2015).Google Scholar