Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:01:45.789Z Has data issue: false hasContentIssue false

Electro-mechanical performance of thin gold films on polyimide

Published online by Cambridge University Press:  30 March 2016

Barbara Putz*
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, and Department of Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, Leoben 8700, Austria
Oleksandr Glushko
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, and Department of Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, Leoben 8700, Austria
Vera M. Marx
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str.1, 40237 Düsseldorf, Germany
Christoph Kirchlechner
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, and Department of Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, Leoben 8700, Austria Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str.1, 40237 Düsseldorf, Germany
Daniel Toebbens
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
Megan J. Cordill
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, and Department of Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, Leoben 8700, Austria
*
*corresponding author: [email protected]
Get access

Abstract

Thin metal films on compliant polymer substrates are of major interest for flexible electronic technologies. The suitability of a film system for flexible applications is based on the electro-mechanical performance of the metal film/polymer substrate couple. This study demonstrates how a 10 nm Cr interlayer deteriorates the electro-mechanical performance of 50 nm Au films on polyimide substrates by inducing the formation of cracks in the ductile layer. Combined in-situ measurements of the film lattice strains with x-ray diffraction and electrical resistance with four point probe of the Au-Cr and Au layers during uniaxial straining confirmed different electro-mechanical behaviours. For Au films with a Cr interlayer the film stress decreases rapidly as cracking initiates and reaches a plateau as the saturation crack spacing is reached. Crack formation and stress drop correspond to a rapid increase in the film resistance. Without the interlayer the Au film stress reaches a maximum around 2% engineering strain and remains constant throughout the experiment. The film resistance is unaffected by the applied elongation up to a maximum strain of 15%, giving no sign of cracking in the metal layer. The outstanding electro-mechanical performance of the gold film indicates that adhesion layers, like Cr, may not be necessary to improve the performance of ductile films on polymers.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, D. C. and Raj, R., Acta Metall. 37, 1265 (1989).Google Scholar
Cordill, M. J., JOM 62, 9 (2010).Google Scholar
Gruber, P. A., Solenthaler, C., Arzt, E., and Spolenak, R., Acta Mater. 56, 1876 (2008).CrossRefGoogle Scholar
Cordill, M. J., Taylor, A. A., and Schmidegg, K., BHM Berg- Und Hüttenmännische Monatshefte 156, 434 (2011).Google Scholar
Cordill, M. J., Taylor, a., Schalko, J., and Dehm, G., Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41, 870 (2010).Google Scholar
Cordill, M. J. and Marx, V. M., Philos. Mag. Lett. 93, 618 (2013).CrossRefGoogle Scholar
Lu, N., Suo, Z., and Vlassak, J. J., Acta Mater. 58, 1679 (2010).Google Scholar
Glushko, O. and Cordill, M. J., Exp. Tech. 1 (2014).Google Scholar
Glushko, O., Marx, V. M., Kirchlechner, C., Zizak, I., and Cordill, M. J., Thin Solid Films 552, 141 (2014).Google Scholar
Glushko, O. and Cordill, M. J., JOM 66, 1 (2014).Google Scholar
Marx, V. M., Toth, F., Wiesinger, A., Berger, J., Kirchlechner, C., Cordill, M. J., Fischer, F. D., Rammerstorfer, F. G., and Dehm, G., Acta Mater. 89, 278 (2015).Google Scholar
Lohmiller, J., Woo, N. C., and Spolenak, R., Mater. Sci. Eng. A 527, 7731 (2010).Google Scholar
Djaziri, S., Renault, P.-O., Hild, F., Le Bourhis, E., Goudeau, P., Thiaudière, D., and Faurie, D., J. Appl. Crystallogr. 44, 1071 (2011).Google Scholar
Cordill, M. J., Glushko, O., Kreith, J., Marx, V. M., and Kirchlechner, C., Microelectron. Eng. 137, 96 (2014).Google Scholar
Putz, B., Schoeppner, R. L., Glushko, O., Bahr, D. F., and Cordill, M. J., Scr. Mater. 102, 23 (2015).Google Scholar
Yeager, J. D. and Bahr, D. F., Thin Solid Films 518, 5896 (2010).Google Scholar
Erko, A., Packe, I., Hellwig, C., Fieber-Erdmann, M., Pawlizki, O., Veldkamp, M., and Gudat, W., in SYNCHROTRON Radiat. Instrum. SRI99 Elev. US Natl. Conf. (AIP Publishing, 2000), pp. 415418.Google Scholar
Spieß, L., Teichert, G., Schwarzer, R., Behnken, H., and Genzel, C., Teubner, Wiesbad. (2005).Google Scholar
Noyan, I. C. and Cohen, J. B., Residual Stress: Measurement by Diffraction and Interpretation (Springer-Verlag, 2013).Google Scholar
Wern, H., Koch, N., and Maas, T., in Mater. Sci. Forum (2002), pp. 127132.Google Scholar
Sim, G.-D., Lee, Y.-S., Lee, S.-B., and Vlassak, J. J., Mater. Sci. Eng. A 575, 86 (2013).Google Scholar