Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T22:39:25.607Z Has data issue: false hasContentIssue false

Electrochemically Induced Phase Evolution of Lithium Vanadium Oxide: Complementary Insights Gained via Ex-Situ, In-Situ, and Operando Experiments and Density Functional Theory

Published online by Cambridge University Press:  08 March 2018

Jiefu Yin
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794.
Wenzao Li
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794.
Mikaela Dunkin
Affiliation:
Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, N.Y, 11794.
Esther S. Takeuchi
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794. Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, N.Y, 11794. Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, N.Y., 11973.
Kenneth J. Takeuchi
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794. Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, N.Y, 11794.
Amy C. Marschilok*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794. Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, N.Y, 11794. Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, N.Y., 11973.
*
*corresponding author: [email protected]
Get access

Abstract

Understanding the structural evolution of electrode material during electrochemical activity is important to elucidate the mechanism of (de)lithiation, and improve the electrochemical function based on the material properties. In this study, lithium vanadium oxide (LVO, LiV3O8) was investigated using ex-situ, in-situ, and operando experiments. Via a combination of in-situ X-ray diffraction (XRD) and density functional theory results, a reversible structural evolution during lithiation was revealed: from Li poor α phase (LiV3O8) to Li rich α phase (Li2.5V3O8) and finally β phase (Li4V3O8). In-situ and operando energy dispersive X-ray diffraction (EDXRD) provided tomographic information to visualize the spatial location of the phase evolution within the LVO electrode while inside a sealed lithium ion battery.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

ŧ

Equivalent contributions.

References

REFERENCES

Xie, A. L., Ma, C. A., Wang, L. B. and Chu, Y. Q., Electrochimica Acta 52(9), 29452949 (2007).Google Scholar
Rasul, S., Suzuki, S., Yamaguchi, S. and Miyayama, M., Electrochimica Acta 82, 243249 (2012).Google Scholar
Sarkar, S., Bhowmik, A., Dixit Bharadwaj, M. and Mitra, S., Journal of The Electrochemical Society 161(1), A14A22 (2014).Google Scholar
Depicciotto, L. A., Adendorff, K. T., Liles, D. C. and Thackeray, M. M., Solid State Ionics 62 (3-4), 297307 (1993).CrossRefGoogle Scholar
Jouanneau, S., Verbaere, A. and Guyomard, D., Journal of Solid State Chemistry 178(1), 2227 (2005).Google Scholar
Benedek, R., Thackeray, M. M. and Yang, L. H., Journal of Power Sources 81, 487490 (1999).Google Scholar
Jiang, T. H. and Falk, M. L., Physical Review B 85(24) (2012).Google Scholar
Zhang, Q., Brady, A. B., Pelliccione, C. J., Bock, D. C., Bruck, A. M., Li, J., Sarbada, V., Hull, R., Stach, E. A., Takeuchi, K. J., Takeuchi, E. S., Liu, P. and Marschilok, A. C., Chem Mater 29(5), 23642373 (2017).Google Scholar
Brady, N. W., Zhang, Q., Knehr, K. W., Liu, P., Marschilok, A. C., Takeuchi, K. J., Takeuchi, E. S. and West, A. C., Journal of the Electrochemical Society 163(14), A2890A2898 (2016).Google Scholar
Croft, M., Shukla, V., Akdoğan, E. K., Jisrawi, N., Zhong, Z., Sadangi, R., Ignatov, A., Balarinni, L., Horvath, K. and Tsakalakos, T., Journal of Applied Physics 105(9), 093505 (2009).Google Scholar
Takeuchi, E. S., Marschilok, A. C., Takeuchi, K. J., Ignatov, A., Zhong, Z. and Croft, M., Energy & Environmental Science 6(5), 14651470 (2013).Google Scholar
Bhadra, S., Hsieh, A. G., Wang, M. J., Hertzberg, B. J. and Steingart, D. A., Journal of The Electrochemical Society 163(6), A1050A1056 (2016).Google Scholar
Gallaway, J. W., Menard, M., Hertzberg, B., Zhong, Z., Croft, M., Sviridov, L. A., Turney, D. E., Banerjee, S., Steingart, D. A. and Erdonmez, C. K., Journal of The Electrochemical Society 162(1), A162A168 (2015).Google Scholar
Zhang, Q., Bruck, A. M., Bock, D. C., Li, J., Stach, E. A., Takeuchi, E. S., Takeuchi, K. J. and Marschilok, A. C., MRS Advances 2(7), 401406.Google Scholar
Zhang, Q., Bruck, A. M., Bock, D. C., Li, J., Sarbada, V., Hull, R., Stach, E. A., Takeuchi, K. J., Takeuchi, E. S. and Marschilok, A. C., Physical Chemistry Chemical Physics 19(21), 1416014169 (2017).Google Scholar