Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T12:58:01.918Z Has data issue: false hasContentIssue false

Electrochemical Studies and Images Performance of La2O3/TiO2 for Energy Storage

Published online by Cambridge University Press:  13 January 2016

C.G. Nava-Dino*
Affiliation:
Universidad Autónoma de Chihuahua, Facultad de Ingeniería. Chihuahua, Circuito No 1., Campus Universitario 2 Chihuahua, Chih. C.P. 31125, México.
N.L. Mendez-Mariscal
Affiliation:
Universidad Autónoma de Chihuahua, Facultad de Ingeniería. Chihuahua, Circuito No 1., Campus Universitario 2 Chihuahua, Chih. C.P. 31125, México.
G. Llerar-Meza
Affiliation:
Universidad Autónoma de Chihuahua, Facultad de Ingeniería. Chihuahua, Circuito No 1., Campus Universitario 2 Chihuahua, Chih. C.P. 31125, México.
R.A. Acosta-Chavéz
Affiliation:
Universidad Autónoma de Chihuahua, Facultad de Ingeniería. Chihuahua, Circuito No 1., Campus Universitario 2 Chihuahua, Chih. C.P. 31125, México.
M.E. Lopéz-Ochoa
Affiliation:
Universidad Autónoma de Chihuahua, Facultad de Ingeniería. Chihuahua, Circuito No 1., Campus Universitario 2 Chihuahua, Chih. C.P. 31125, México.
J.P. Flores-De los Ríos
Affiliation:
Universidad Autónoma de Chihuahua, Facultad de Ingeniería. Chihuahua, Circuito No 1., Campus Universitario 2 Chihuahua, Chih. C.P. 31125, México.
A. Martínez-Villafañe
Affiliation:
Departamento de Integridad y Diseño de Materiales Compuestos. Centro de Investigación en Materiales Avanzados. S.C. CIMAV. Miguel de Cervantes No 120 Complejo Industrial Chihuahua, C.P 31109, Chihuahua, Chih. México
*
Get access

Abstract

Powders of La2O3 were mixed with mechanical ball-milling technique (MA) adding TiO2, to improve the electrochemical performance as a storage material. Microstructures, morphologies and electrochemical results were investigated using TEM, X-ray diffraction (XRD), Cyclic Voltammetry and Potentiodynamic studies. Results showed that, the samples with TiO2 content affected the capacity of response. The alloys exhibit a superior capacity and stability adding TiO2. The milling ball to powder weight ratio was kept 5 to 1 for all experimental runs. Milling intervals were 0, 2 and 4 hrs; using alternate cycles of 30 minutes milling and 30 min resting. The nanostructure TiO2 powder, improves the samples to design a better electrode. TiO2 has significant influence on electrochemical performance of electrodes. Electrochemical experiments were performed on ACM Instruments Gill AC and a typical three electrode setup was constructed to measure the electrochemical properties of the working electrode. Here, platinum was used as the counter electrode and calomel was used as the reference electrode. Structures of the samples were analyzed by digital image tools.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nava-Dino, C.G., Bautista-Margulis, R.G., Neri-Flores, M.A., Borunda-Terrazas, A., López-Ocaña, G., Mendez-Mariscal, N.L., Chacón-Nava, J.G., Martínez-Villafañe, A., “Electrochemical Performance of La2O3 /TiO2 and Effects of Ball Milling”, Int. J. Electrochem. Sci., 10 (2015) 1078110791.Google Scholar
Reiss, Martin A., Sabathiel, Nikolaus, Ahammer, Helmut, “Noise dependency of algorithms for calculating fractal dimensions in digital images”, Chaos, Solitons and Fractals 78 (2015) 3946.Google Scholar
Ying, Liu, Jiangli, Lin, Ke, Chen, “A Stable Algorithm of Box Fractal Dimension and Its Application in Pore Structure”, Rare Metal Materials and Engineering, (2015), 44(4): 08000804.Google Scholar
Meksi, Manel, Turki, Asma, Kochkar, Hafedh, Bousselmi, Latifa, Guillard, Chantal, Berhault, Gilles, “The role of lanthanum in the enhancement of photocatalyticproperties of TiO2nanomaterials obtained by calcination ofhydrogenotitanate nanotubes” Applied Catalysis B: Environmental 181 (2016) 651660 CrossRefGoogle Scholar
Patil, Swati J., Lokhande, Chandrakant D., “Fabrication and performance evaluation of rare earth lanthanum sulfide film for supercapacitor application: Effect of air annealing”, Materials and Design 87 (2015) 939948.CrossRefGoogle Scholar
Lihui, Zhang, Feng, Duan, Yaji, Huang, Chiensong, Chyang, “Effect of calcium magnesium acetate on the forming property and fractal dimension of sludge pore structure during combustion”, Bioresource Technology 197 (2015) 235243.Google Scholar
Dobrescu, G., Papa, F., State, R., Fangli, I., Balint, I., “Particle size distribution of Pt–Cu bimetallic nanoparticles by fractal analysis”, Powder Technology 269 (2015) 532540 Google Scholar
Yang, Yunchuan, Wang, Liang, Feng, Yan, “Research on fractal dimensions of particles and their relationships”, Powder Technology (2015), doi: 10.1016/j.powtec.2015.10.050.Google Scholar
Referenced from http://imagej.nih.gov/ij/features.html, on November 21st 2015.Google Scholar
Gupta, Sapna, Zhong, Yu, Mahapatra, Manoj, Singh, Prabhakar, “Processing and electrochemical performance of manganese-doped lanthanum-strontium chromite in oxidizing and reducing atmospheres”, international journal of hydrogen energy 4 0 (2015) 13479 e1 3489.Google Scholar