No CrossRef data available.
Article contents
Electrical Characterization and Nanoindentation of Opto-electro-mechanical Percolative Composites from 2D Layered Materials
Published online by Cambridge University Press: 03 August 2017
Abstract
In this paper, we have developed composites with Poly-methyl methacrylate (PMMA) as the matrix material, while transition metal dichalcogenides (TMDCs), MoS2 and WS2 and graphite served as the filler materials. The PMMA was chosen as the matrix material due to its low-cost, wide availability, as well as its promising mechanical and optical properties for enabling opto-electro-mechanical sensing devices. The amount of filler material used ranged from 100 mg/ml up to 400 mg/ml. With the aid of designed fixtures we related the electrical properties of the PMMA-based composite sensors to the degree of strain or deformation. Additionally, a nanoindenter was used to measure the modulus of elasticity, with values as low as 2 GPa and as high as 20 GPa for the graphite composites, and hardness values which ranged from 0.1 GPa to ∼ 1.6 GPa.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2017