Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T01:41:28.305Z Has data issue: false hasContentIssue false

Effects on the amorphous Ga2O3 film surfaces by sub-IB-metal-nano-layers

Published online by Cambridge University Press:  25 January 2019

L. I. Juárez-Amador*
Affiliation:
Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Ciudad de México, C.P.07360, México.
M. Galván-Arellano
Affiliation:
Department of Electrical Engineering, Solid State Electronic Section (SEES), CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Ciudad de México, C.P.07360, México.
Y. M. Hernández-Rodríguez
Affiliation:
Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Ciudad de México, C.P.07360, México.
J. A. Andraca-Adame
Affiliation:
Instituto Politécnico Nacional, UPIIH, Carretera Pachuca-Actopan kilómetro 1+500, San Agustín Tlaxiaca, Hidalgo “Ciudad del conocimiento y la cultura”, México.
G. Romero-Paredes
Affiliation:
Department of Electrical Engineering, Solid State Electronic Section (SEES), CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Ciudad de México, C.P.07360, México.
R. Peña-Sierra
Affiliation:
Department of Electrical Engineering, Solid State Electronic Section (SEES), CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Ciudad de México, C.P.07360, México.
*
Get access

Abstract

This work reports by the first time a method to control the geometry of Ga2O3 films nanocrystallites at 350 °C. The formation of controlled shaped nano-crystallites of γ-Ga2O3 from amorphous Ga2O3 films grown by RF-Sputtering at room temperature driven by nano-layers of group IB metals (Cu, Ag or Au) is studied. The reported results can be explained by the role of subsurface metal nano-layers and the non-equilibrium nature of the sputtering processes. To study the effects on the surface structure and their optical properties arrays of amorphous-Ga2O3/IB-metal/amorphous-Ga2O3 were annealed in dry N2 atmosphere at 350 °C by 50, 100 and 150 min. The experimental results can be explained by the evolution of the amorphous character of the films amorphous films towards the nanocrystalline γ-Ga2O3 phase driven by the metal nano-layer seed nature. As the annealing time was increased the transition from amorphous-Ga2O3 to the nanocrystalline γ-Ga2O3 phase was detected by X-ray diffraction analysis. The transition to the nanocrystalline γ-Ga2O3 is demonstrated by the formation of octahedral, triangle and ball shape nanocrystallites with sizes of ∼5 to 50 nm according to FE-SEM analysis. The influence of the metal nano-layer is clearly seen by the shift of the plasmon frequency resonance produced by the Ga2O3/IB-metal/Ga2O3 arrays in the region from 400 to 600 nm caused by the modification of the interface Ga2O3/IB-metal produced by the applied annealing stages.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, E. et al., Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 272, 6165 (2012).CrossRefGoogle Scholar
Won, Y. H. and Stanciu, L. A., Sensors (Switzerland), 12 (10), 1301913033 (2012).CrossRefGoogle Scholar
Wang, X. B., Song, C., Geng, K. W., Zeng, F., and Pan, F., J. Phys. D. Appl. Phys. 39 (23), 49924996 (2006).CrossRefGoogle Scholar
Das, S. and Alford, T. L., J. Appl. Phys. 113 (24), 17 (2013).Google Scholar
Gong, H., Hu, J. Q., Wang, J. H., Ong, C. H., and Zhu, F. R., Sensors Actuators, B Chem. 115 (1), 247251 (2006).CrossRefGoogle Scholar
Hayashi, H., Huang, R., Oba, F., Hirayama, T., and Tanaka, I., J. Mater. Res. 26 (04), 578583 (2011).CrossRefGoogle Scholar
Eranna, G. et al., A Compr. Rev. Crit. Rev. Solid State Mater. Sci. 8436, 111118 (2010).Google Scholar
Montes-Valenzuela, I., Romero-Paredes, G., Vázquez-Agustín, M. A., Baca-Arroyo, R., and Peña-Sierra, R., Mater. Sci. Semicond. Process 37, 185189 (2015).CrossRefGoogle Scholar
Cullity, B. D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesly, Reading, Massachusetts, 1978).Google Scholar
Truong, V. V. and Scott, G. D., J. Opt. Soc. Am. 67 (4), 502510 (1977).CrossRefGoogle Scholar
Bader, G., Ashrit, P. V., Girouard, F. E., and Van Truong, V., J. Appl. Phys. 68 (4), 18201824 (1990).CrossRefGoogle Scholar
Xu, G., Tazawa, M., Jin, P., and Nakao, S., Appl. Phys. A Mater. Sci. Process. 80 (7), 15351540 (2005).CrossRefGoogle Scholar