Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T22:56:42.168Z Has data issue: false hasContentIssue false

Effects of tic Nanostructured Overlays on D2 Steels by PTA

Published online by Cambridge University Press:  27 November 2017

L. Santiago-Bautista*
Affiliation:
Corporación Mexicana de Investigación en Materiales SA de CV, Ciencia y Tecnología No. 790, Fracc. Saltillo 400; Saltillo, Coahuila. C.P. 25290, México.
H. M. Hdz-García
Affiliation:
Corporación Mexicana de Investigación en Materiales SA de CV, Ciencia y Tecnología No. 790, Fracc. Saltillo 400; Saltillo, Coahuila. C.P. 25290, México.
M. Alvarez-Vera
Affiliation:
Corporación Mexicana de Investigación en Materiales SA de CV, Ciencia y Tecnología No. 790, Fracc. Saltillo 400; Saltillo, Coahuila. C.P. 25290, México.
R. Muñoz-Arroyo
Affiliation:
Corporación Mexicana de Investigación en Materiales SA de CV, Ciencia y Tecnología No. 790, Fracc. Saltillo 400; Saltillo, Coahuila. C.P. 25290, México.
J. L. Acevedo-Dávila
Affiliation:
Corporación Mexicana de Investigación en Materiales SA de CV, Ciencia y Tecnología No. 790, Fracc. Saltillo 400; Saltillo, Coahuila. C.P. 25290, México.
F. J. Vázquez-García
Affiliation:
Universidad Autónoma de Coahuila, Facultad de Ingeniería, Arteaga, Coahuila, México.
J. Jorge Ruiz Mondragon
Affiliation:
Corporación Mexicana de Investigación en Materiales SA de CV, Ciencia y Tecnología No. 790, Fracc. Saltillo 400; Saltillo, Coahuila. C.P. 25290, México.
*
Get access

Abstract

Two metal fillers with TiC nanoparticles (TiC NPs) of less than 100 nm for the overlay process is an alternative to hardfacing for treating surfaces subjected to severe wear. In this work, the effect of tribological behavior for TiC NPs addition on two Co-based filler materials, as well as the dilutions, was studied. Mixtures of Co-based filler metals without and with 0.5% and 2% TiC NPs were deposited onto D2 steel plates using PTA (Plasma Transferred Arc). The BET surface area was 0.17 m2 g-1 and 0.31 m2 g-1, respectively, for Stellite 6 and 12. The distribution of ca 23% macroporous for Stellite 6 was sufficient to get inside the TiC NPs, as well as in the case of Stellite 12, with a pore distribution of ca 13%. Stellite 12 has an increase in the dilutions (70%) and enthalpies showed endothermic reactions. Stellite 6 with NPs was determined to be most effective in increasing the wear resistance.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cherepanov, A.N., Shapeev, V.P., Liu, G., Cao, L., Advances in Materials Physics and Chemistry 2 (2012).CrossRefGoogle Scholar
Hdz-García, H.M., Muñoz-Arroyo, R., Mtz-Enriquez, A.I., Acevedo-Dávila, J.L., Reyes-Valdés, F.A., Pech-Canul, M.I., Castro-Román, M.J., J. Mater. Process. Tech. 215 (2015).CrossRefGoogle Scholar
Hdz-García, H.M., Muñoz-Arroyo, R., Mtz-Enriquez, A.I., Acevedo-Dávila, J.L., Reyes-Valdés, F.A., García-Vazquez, F., J. Mater. Sci. Tech 30 (3) (2014).CrossRefGoogle Scholar
Hou, Q.Y., Huang, Z., Wang, J.T., Surf. Coat. Technol. 205, 28062812 (2011).CrossRefGoogle Scholar
Merrick, S., Kotecki, D., Wu, J., Surfacing, Materials and aplications - part 2, Welding Handbook, eighth ed. (American Welding Society, USA, 1998).Google Scholar
Crook, P., ASM Handbook Vol. 2, Cobalt and Cobalt alloys, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, (ASM International, USA, 1990).Google Scholar
Sidhu, T.S., Prakash, S., Agrawal, R.D., Surf. Coat. Technol. 201, 273281 (2006).CrossRefGoogle Scholar
Lucchetta, G., Giusti, R., Vezzù, S., Bariani, P.F., CIRP Ann. Manuf. Techn. 64, 535538 (2015).CrossRefGoogle Scholar
Cinca, N., Guilemany, J.M., Surf. Coat. Technol. 220, 9097 (2013).CrossRefGoogle Scholar
Motallebzadeh, E. Atar, H. Cimenoglu, Tribol. Int. 91, 4047 (2015).CrossRefGoogle Scholar
Cheng, D., Liu, D., Liu, Y., Wang, H., Huang, Z., Surf. Coat. Technol. 239, 2833 (2014).CrossRefGoogle Scholar
da Conceição, L, D’Oliveira, A.S.C.M., Surf. Coat. Technol. 288, 6978 (2016).CrossRefGoogle Scholar
Sun, J., Simon, S.L., Acta 463, 3240 (2007).Google Scholar
IUPAC Manual of Symbols and Terminology; Pure Appl. Chem., (1978).Google Scholar
Potter, D. A. and Easterling, K. E.. Phase transformations in metals and alloys. (Springer-Science, 2nd, British, 1992). Cap. 4, 221; 237.Google Scholar
Lekatou, D. Sioulas, E. Karantzalis, D. Grimanelis, Surf. Coat. Technol. 276, 539556 (2015).CrossRefGoogle Scholar