Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T20:34:57.897Z Has data issue: false hasContentIssue false

Effect of the Heat Input on the Heat Affected Zone in the Austenitic Stainless Steel Welding by the GTAW Process-An Experimental and Computational Analysis

Published online by Cambridge University Press:  23 November 2017

V. García-García
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5” Ciudad Universitaria, 58066Morelia, Michoacán, México. E-mail: [email protected], [email protected]
H. Hernández-Belmontes
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5” Ciudad Universitaria, 58066Morelia, Michoacán, México. E-mail: [email protected], [email protected]
I. Mejía*
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5” Ciudad Universitaria, 58066Morelia, Michoacán, México. E-mail: [email protected], [email protected]
F. Reyes-Calderón
Affiliation:
Departamento de Metalmecánica, Instituto Tecnológico de Morelia, Av. Tecnológico 1500, 58120Morelia, Michoacán, México.
C. Maldonado
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-5” Ciudad Universitaria, 58066Morelia, Michoacán, México. E-mail: [email protected], [email protected]
*
Get access

Abstract

Arc welding processes such Gas Tungsten (GTAW), Gas Metal (GMAW) and Submerged Arc (SAW) are typically used in order to produce a weld joint in stainless steels (SS). However, welding thermal cycle generates a sensitization by formation of chromium carbides. In addition, the heat affected zone (HAZ) is also susceptible to sensitization and fracture of the weldment. Weld bead geometric parameters such depth penetration, fusion zone (FZ) width and size of HAZ are mainly determined by welding operation parameters. This research work studies the influence of welding current, welding speed and arc gap on the width and grain size in the HAZ produced by a single pass of autogenous GTAW process applied to a plate butt-welded joint of AISI 304 SS. The welded specimens were prepared for analysis by light optical (LOM) and scanning electron (SEM) microscopies to identify the interfaces between FZ-HAZ and base material as well as the grain growth in the HAZ. Adams equation for 2-D heat distribution was used to estimate theoretically the width of the HAZ. Furthermore, computational simulation which solved a convective-diffusion problem of the volumetric heat applied during the weld pool formation allowed to correlate the thermal gradient and the molten material flow of the FZ with the welding depth penetration, and width and grain size in the HAZ. The results demonstrated that the high heat input generates an important grain growth in the HAZ caused by low heat diffusion in the adjacent material to the fusion line. Welding speed was the main factor in the thermal gradient changes. Simulation results indicate that outward recirculating flow in the molten metal produced by surface tension forces is responsible for the shallow penetration of the autogenous GTAW process. Theoretical and computational estimations of the HAZ are in good agreement with the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kumar, S. and Shahi, A. S., Materials and Design 89, 399 (2016).CrossRefGoogle Scholar
Unnikrishnan, R., Idury, K. S., Ismail, T. P., Bhadauria, A., Shekhawat, S. K., Khatirkar, R. K. and Sapate, S. G., Materials Characterization 93, 10 (2014).Google Scholar
Lu, S. P., Qin, M. P. and Dong, W. C., Journal of Materials Processing Technology 213, 229 (2013).CrossRefGoogle Scholar
Aval, H. J., Farzadi, A., Serajzadeh, S. and Kokabi, A. H., The International Journal of Advanced Manufacturing Technology 42, 1043 (2009).Google Scholar
Lu, F., Tang, X., Yu, H. and Yao, S., Computational Materials Science 35, 458 (2006).Google Scholar
Kim, I. S. and Basu, A., Journal of Materials Processing Technology 77, 17 (1998).Google Scholar
Hu, Y., He, X., Yu, G., Ge, Z., Zheng, C. and Ning, W., Applied Surface Science 258, 5914 (2012).Google Scholar
Sahoo, P., DebRoy, T. and McNallan, M. J., Metallurgical Transactions B 19, 483 (1988).Google Scholar
Adams, C. M. Jr, Welding Journal 37, 210 (1958).Google Scholar
Li, D., Lu, S., Dong, W., Li, D. and Li, Y., Journal of Materials Processing Technology 212 , 128 (2012).CrossRefGoogle Scholar