Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T21:44:47.275Z Has data issue: false hasContentIssue false

Effect of the drying on morphology and texture of aerogels and zirconia cryogels

Published online by Cambridge University Press:  02 December 2019

Tzipatly A. Esquivel-Castro
Affiliation:
Departamento de Materiales Cerámico Avanzados y Energía, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, 25280, Saltillo, Coahuila, México
Antonia Martínez-Luévanos*
Affiliation:
Departamento de Materiales Cerámico Avanzados y Energía, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, 25280, Saltillo, Coahuila, México
Luis Alfonso García-Cerda
Affiliation:
Centro de Investigación en Química Aplicada, 25294, Saltillo, Coahuila, México
Juan C. Contreras-Esquivel
Affiliation:
Departamento de Materiales Cerámico Avanzados y Energía, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, 25280, Saltillo, Coahuila, México
Pascual Bartolo Pérez
Affiliation:
Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, 97310, Mérida, Yucatán, México
Elsa Nadia Aguilera González
Affiliation:
Departamento de Materiales Cerámico Avanzados y Energía, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, 25280, Saltillo, Coahuila, México
*
Get access

Abstract

Due to their excellent properties, aerogel has attracted the attention of the scientific community to use it in the biomedical area as a drug delivery system. This work reports on the synthesis and characterization of ZrO2 aerogels and cryogels obtained by the sol-gel method. The influence of different cetyltrimethylammonium bromide (CTAB) and the type of drying on structural, morphological and texture properties of ZrO2 aerogels and cryogels was investigated. SEM images reveal that a porous interconnected three-dimensional network was formed into aerogels due to supercritical drying. Zirconia aerogel sample has a specific surface area (SBET) larger than zirconia cryogels. Therefore, our results indicate that zirconia aerogel is an adequate material for applications in drug delivery systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Esquivel, T., Ibarra, M., Oliva, J., Martínez, A., Mater. Sci. Eng. C 96, 915 (2019).CrossRefGoogle Scholar
Gao, M., Liu, B., Zhao, P., Yi, X., Shen, X., Xu, Y., J. Sol-gel Sci. Techn. 91, 514 (2019)10.1007/s10971-019-05057-5CrossRefGoogle Scholar
Liao, W., Zhao, H., Liu, Z., Xu, S., Wang, Y., Compos. B. Eng. 173, 107036 (2019).10.1016/j.compositesb.2019.107036CrossRefGoogle Scholar
Wang, X., Li, C., Shi, Z., Zhi, M., Hong, Z., RSC Adv 8, 8011 (2018).10.1039/C7RA13041DCrossRefGoogle Scholar
Lee, D., Kim, J., Kim, S., Kim, G., Roh, J., Lee, S., Han, H., Micropor Mesopor Mat. 288, 109546 (2019).10.1016/j.micromeso.2019.06.008CrossRefGoogle Scholar
Tamayo, A., Mazo, M., Ruiz, R., Illana, A., Bedoya, L., Veiga, M., Rubio, J., Chem Eng J. 280, 165 (2015).CrossRefGoogle Scholar
Pons, A., Casas, L., Estop, E., Molins, E., Harris, K., Xu, M., J. Non-Cryst. Solids 358, 461 (2012).10.1016/j.jnoncrysol.2011.10.031CrossRefGoogle Scholar
Liu, B., Liu, X., Zhao, X., Fan, H., Zhang, J., Yi, X., Gao, M., Zhu, L., Wang, X., Chem. Phys. Lett. 715, 109 (2019).10.1016/j.cplett.2018.11.025CrossRefGoogle Scholar
Chervin, C., Clapsaddle, B., Wei, H., Gash, A., Satcher, J., Kauzlarich, S., Chem. Mater. 17, 3345 (2005).CrossRefGoogle Scholar
Gao, H., Zhang, Z., Shi, Z., Zhang, J., Zhi, M., Hong, Z., J. Sol-gel Sci. Techn. 85, 567 (2018).CrossRefGoogle Scholar
Yu, H., Li, X., He, J., Su, D., Ji, H., Integrated Ferroelectrics 191, 145 (2018).10.1080/10584587.2018.1457385CrossRefGoogle Scholar
Shi, Z., Gao, H., Wang, X., Li, C., Wang, W., Hong, Z., Zhi, M., Micropor Mesopor Mat. 259, 26 (2018).10.1016/j.micromeso.2017.09.025CrossRefGoogle Scholar
Maleki, H., Duraes, L., García, C., del Gaudio, P., Portugal, A., Mahmoudi, M., Adv. Colloid Interface Sci. 236, 1 (2016).10.1016/j.cis.2016.05.011CrossRefGoogle Scholar
García, C., Alnaief, M., Smirnova, I., Carbohyd. Polym. 86, 1425 (2011).CrossRefGoogle Scholar
Mehling, T., Smirnova, I., Guenther, U., Neubert, R., J. Non-Cryst. Solids 355, 2472 (2009).CrossRefGoogle Scholar
García, A., Carrillo, F., Oliva, J., Esquivel, T., Díaz, S., Ceram Int. 43, 12196 (2017).CrossRefGoogle Scholar
Wu, X., Shao, G., Liu, S., Shen, X., Cui, S., Chen, X., Powder Technol. 312, 1 (2017).CrossRefGoogle Scholar
Bangi, U., Park, H., Int Nano Lett. 8, 221 (2018).10.1007/s40089-018-0241-7CrossRefGoogle Scholar
Gorban, O., Synyakina, S., Volkova, G., Gorban, S., Konstantiova, T., Lyubchik, S., J. Solid State Chem. 232, 249 (2015).CrossRefGoogle Scholar
Jung, H., Han, W., Cho, H., Park, H., Mater. Express. 7, 291 (2017).10.1166/mex.2017.1371CrossRefGoogle Scholar