Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T01:38:41.176Z Has data issue: false hasContentIssue false

Effect of Temperature on Creep Behavior in Carbon Nanotube-Reinforced Epoxy Bonded Interface — An Atomistic Investigation

Published online by Cambridge University Press:  15 January 2018

Wei Jian
Affiliation:
Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
Denvid Lau*
Affiliation:
Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
*
Get access

Abstract

Epoxy is widely used as structural adhesive for bonded material systems in aerospace, construction, microelectronics and other industrial applications. In order to achieve better performance, carbon nanotubes are often applied as reinforced additives due to the extraordinary mechanical properties. The resulting carbon nanotube-reinforced epoxy has presented enhancement in the bonding strength and durability during long-term sustained loading. However, the bonded material systems in reality usually suffer from different ambient environments, especially varying temperature conditions. The evaluation of temperature effect on creep responses at the interface between epoxy adhesive and substrate becomes an essential issue. The investigation is conducted using molecular dynamics simulations to study the interfacial creep behavior in the bilayer system containing carbon nanotube-reinforced epoxy and silica substrate. The simulation results show the atomistic movement at the interface region under constant loading at various temperature levels, and indicate the improved properties with the addition of carbon nanotubes in epoxy matrix. The study enriches the understanding of temperature effect on the interfacial creep behavior at the atomic level, and provides promising predictions and guidelines for the design of composite materials in long-term applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lau, D., Qiu, Q., Zhou, A. and Chow, C. L., Constr. Build. Mater. 126, 573585 (2016).CrossRefGoogle Scholar
Jung, Y. H., Chang, T.-H., Zhang, H., Yao, C., Zheng, Q., Yang, V. W., Mi, H., Kim, M., Cho, S. J., Park, D.-W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S. and Ma, Z., Nat. Commun. 6, 7170 (2015).Google Scholar
Thostenson, E. T., Ren, Z. and Chou, T.-W., Compos. Sci. Technol. 61 (13), 18991912 (2001).Google Scholar
Baughman, R. H., Zakhidov, A. A. and de Heer, W. A., Science 297 (5582), 787-792 (2002).Google Scholar
Arash, B., Wang, Q. and Varadan, V. K., Sci. Rep. 4, 6479 (2014).Google Scholar
Coleman, J. N., Khan, U. and Gun’ko, Y. K., Adv. Mater. 18 (6), 689706 (2006).Google Scholar
Wernik, J. M., Meguid, S. A., Mater. Design. 59, 1932 (2014).Google Scholar
Gantayat, S., Rout, D. and Swain, S. K., Polym. Plast. Technol. Eng. 57(1), 116 (2018).Google Scholar
Tehrani, M., Safdari, M. and Al-Haik, M. S., Int. J. Plast. 27(6), 887901 (2011).Google Scholar
Revathi, A., Shalini, V. and Joshi, S., ASEM. 9(5), 384390 (2017).Google Scholar
Kuang-Ting, H., Justin, A. and Suresh, G. A., Nanotechnology 14 (7), 791 (2003).Google Scholar
Lim, A. S., Melrose, Z. R., Thostenson, E. T. and Chou, T.-W., Compos. Sci. Technol. 71(9), 11831189 (2011).Google Scholar
Soliman, E., Kandil, U. F. and Reda Taha, M., Int. J. Adhes. Adhes. 33, 3644 (2012).Google Scholar
Zhou, A., Tam, L.-h., Yu, Z. and Lau, D., Compos. Part B-Eng 71, 6373 (2015).Google Scholar
Zhou, A., Büyüköztürk, O. and Lau, D., Cem. Concr. Compos. 80, 287297 (2017).Google Scholar
Rathore, D. K., Prusty, R. K. and Ray, B. C., J. Appl. Polym. Sci. 134 (21), 44851 (2017).CrossRefGoogle Scholar
Bhatia, M., Mathaudhu, S. and Solanki, K., Acta Mater. 99, 382391 (2015).Google Scholar
Jiao, S. and Kulkarni, Y., Comp. Mater. Sci. 110, 254260 (2015).Google Scholar
Simoes, R., Cunha, A. M. and Brostow, W., Modell. Simul. Mater. Sci. Eng. 14(2), 157 (2006).Google Scholar
Sahputra, I. H. and Echtermeyer, A. T., Macromol. Theory Simul. 24(1), 6573 (2015).Google Scholar
Qu, T., Verma, D., Shahidi, M., Pichler, B., Hellmich, C. and Tomar, V., MRS Bull. 40(04), 349358 (2015).Google Scholar
Jian, W., Tam, L.-h. and Lau, D., Compos. Part B-Eng 132, 229236 (2018).CrossRefGoogle Scholar
Tam, L.-h. and Lau, D., Polymer 57, 132142 (2015).Google Scholar
Accelrys Software Inc.: Materials Studio.Google Scholar
Tam, L.-h. and Lau, D., RSC Adv. 4(62), 3307433081 (2014).Google Scholar
Sun, H., Mumby, S. J., Maple, J. R. and Hagler, A. T., J. Am. Chem. Soc. 116(7), 29782987 (1994).Google Scholar
Yang, S., Gao, F. and Qu, J., Polymer 54(18), 50645074 (2013).Google Scholar
Hockney, R. W. and Eastwood, J. W., Computer simulation using particles, ed. Hockney, R. W. and Eastwood, J. W. (CRC Press, 1988) pp. 1823.CrossRefGoogle Scholar
Isralewitz, B., Baudry, J., Gullingsrud, J., Kosztin, D. and Schulten, K., J. Mol. Graphics Modell. 19(1), 1325 (2001).Google Scholar
Plimpton, S., J. Comput. Phys. 117(1), 119 (1995).CrossRefGoogle Scholar
Li, Y.-L., Shen, M.-Y., Chen, W.-J., Chiang, C.-L. and Yip, M.-C., J. Polym. Res. 19(7), 9893 (2012).Google Scholar