Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T13:01:40.687Z Has data issue: false hasContentIssue false

Effect of temperature during the synthesis process of CdSe nanoparticles using the colloidal technique

Published online by Cambridge University Press:  09 December 2020

R. González-Díaz*
Affiliation:
Facultad de Ciencias, UAEM, Campus “El Cerrillo, Piedras Blancas”. Carretera Toluca – Ixtlahuaca, Km. 15.5, CP. 50200Toluca de Lerdo, México.
D. Fernández-Sánchez*
Affiliation:
Facultad de Ciencias, UAEM, Campus “El Cerrillo, Piedras Blancas”. Carretera Toluca – Ixtlahuaca, Km. 15.5, CP. 50200Toluca de Lerdo, México.
P. Rosendo-Francisco*
Affiliation:
Facultad de Ciencias, UAEM, Campus “El Cerrillo, Piedras Blancas”. Carretera Toluca – Ixtlahuaca, Km. 15.5, CP. 50200Toluca de Lerdo, México.
G. Sánchez-Legorreta*
Affiliation:
Facultad de Ciencias, UAEM, Campus “El Cerrillo, Piedras Blancas”. Carretera Toluca – Ixtlahuaca, Km. 15.5, CP. 50200Toluca de Lerdo, México.
Get access

Abstract

In this work, the first results of the effects of temperature during the production of Se2- ions and the effect during the interaction of Cd2+ and Se2- ions in the synthesis process of CdSe nanoparticles are presented. The synthesis of CdSe was carried out by the colloidal technique, in the first one we used a temperature of 63 °C to produce Se2- ions and in the second one an interaction temperature of 49 °C. The samples were characterized using a Scanning Electron Microscope (SEM) and a Scanning Tunneling Microscope (STM). From the SEM micrographs it was possible to identify the thorns formation and irregular islands. STM micrographs reveal elliptical shapes with a regular electron cloud profile.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rosmani, C. H., Zainurul, A. Z., Rusop, M. y Abdullah, S.. The Optical and Electrical Properties of CdSe Nanoparticles. Advanced Materials Research Vol. 832 (2014), pp 557-561.CrossRefGoogle Scholar
Valencia, O. G., Corea, M., Yanez, C. G., Aguirre, N. M.. Optical properties of CdSe nanoparticles synthesized by hot injection in air. Revista Mexicana de Física. 64 (2018) pp 275-282.Google Scholar
Musa, C., Koray, S., Abdulkadir, A.. Dielectric properties of CdSe quantum dots-loaded cryogel for potential future electronic applications. Materials Science in Semiconductor Processing. (2020), 119,Google Scholar
Murray, C., D.J. Noms, and M. G. Bawendi. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715.Google Scholar
Junjie, Z., Xuehong, L., Xiaoning, Z. and Jun, W.. Photochemical synthesis and characterization of CdSe nanoparticles. Materials Letters 47 (2001) 339343Google Scholar
Mi, W., Tian, J., Tian, W., Dai, J., Wang, X., and Liu, X.. Temperature dependent synthesis and optical properties of CdSe quantum dots. Ceramics International 2012, 38(7):55755583.CrossRefGoogle Scholar
Dhanam, M., Prabhu, R. and Manoj, P. K., Mater, Chem, Physics. (2008) 107, 289.CrossRefGoogle Scholar
Martínez García, N.E.. Síntesis y funcionalización de nanopartículas semiconductoras con aplicación potencial a celdas solares de tercera generación. Tesis. IPN, (2014).Google Scholar
Zanella, R.. Metodologías para la síntesis de nanopartículas controlando forma y tamaño. Vol.5, (2012), 69-81.CrossRefGoogle Scholar
Douda, J., Calva, P. A, Torchynska, T. V., Pena Sierra, R., de la Rosa Vázquez, J.M. Marcadores cuánticos para la Detección de Cáncer Revisión, Superficies y Vacío. (2008) 21, (4) 10-17.Google Scholar
Chang, J. and Waclawik, E.R.. Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv., 4 (2014) 23505.CrossRefGoogle Scholar
Mi, W., Tian, J., Tian, W., Dai, J., Wang, X., Liu, X.. Temperature dependent synthesis and optical properties of CdSe quantum dots. Ceramics International 38 (2012) 5575-5583.CrossRefGoogle Scholar
Sánchez Legorreta, G., Domingo Rosendo Francisco, P., Vargas Sanabria, R. and Olea Mejía, O.. Morphological Characterization with STM and SEM of CdSe Nanostructures in Function of pH. Journal of Materials Science and Engineering A 9 (7-8) (2019) 153-161.Google Scholar
Brundle, C.R., Evans, C.A., and Wilson, S.. Encyclopedia of materials characterization: surfaces, interfaces, thin films. Butterworth-Heinemann, 1992.Google Scholar
Giintherodt, H. J. and Wiesendanger, R.. Scanning Tunneling Microscopy I, 2nd ed., Springer-Verlag.Google Scholar
Egerton, R.F.. Physical Principles of Electron Microscopy. Springer.Google Scholar
Horcas, I., Fernández, R, Gomez-Rodriguez, J., Colchero, J., Gómez-Herrero, J., and Baro, A.. “WSXM: A Software for Scanning Probe Microscopy and a Tool for NanotechnologyReview of Scientific Instruments 78 (2017): 013705.CrossRefGoogle Scholar
Gómez Piñedos, B. S., Granados-Olveros, Gilam. Synthesis and characterization of optic properties of CdSe and CdSe/ZnS quantum dots. Colomb.Quim, (2018), 47(1), 57-63.Google Scholar
Hegazy, M. A., Abd El-Hameed, A. M.. Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: Production and optical properties, NRIAG Journal of Astronomy and Geophysics, (2014) Vol.3, 82-87.Google Scholar
Fultz, B.. Howe, J.. Transmission Electron Microscopy and diffractometry of materials. 4th Edition (Springer, 2013) p.59.121.CrossRefGoogle Scholar
Sánchez Solís, A. I. Síntesis y caracterización de puntos cuánticos de PbSe con aplicaciones en celdas fotovoltaicas con configuración FTO/TiO2/CdS/PbSe/ZnS. CIO, (2016).Google Scholar