Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T02:55:13.339Z Has data issue: false hasContentIssue false

Effect of pH on Nanoparticle Structure in Radiochemical Synthesis ofPtCu Alloy Supported on γ-Fe2O3 andCarbon

Published online by Cambridge University Press:  18 January 2016

Tomohisa Okazaki*
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Satoshi Seino
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Junichiro Kugai
Affiliation:
Kobe City College of Technology, 8-3 Gakuenhigashimachi Nishiku, Kobe, Hyogo 651-2194, Japan
Yuji Ohkubo
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Takashi Nakagawa
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Takao A. Yamamoto
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
*
Get access

Abstract

PtCu nanoparticles were synthesized with different pH and support conditionsusing radiochemical process. The nanoparticle structures were characterized bytransmission electron microscopy, inductively coupled plasma atomic emissionspectrometry, X-ray absorption spectroscopy, and X-ray diffraction techniques.The nanoparticle structure was relevant to the pH of the precursor solutions.The lattice parameter of PtCu alloy increased in high pH samples, whichindicates the critical effect of metal ion adsorption in precursor solution onnanoparticle structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Koh, S. and Strasser, P., J. Am. Chem. Soc. 129, 12624 (2007). DOI: 10.1021/ja0742784.Google Scholar
Komatsu, T. and Tamura, A., J. Catal. 258 (2), 306 (2008). DOI: 10.1016/j.jcat.2008.06.030.Google Scholar
Moriya, T., Kugai, J., Seino, S., Ohkubo, Y., Nakagawa, T., Nitani, H., and Yamamoto, T. A., J. Nanopart. Res. 15, 1451 (2013).Google Scholar
Belloni, J., Catal. Today 113, 141156 (2006).Google Scholar
Nitani, H., Nakagawa, T., Daimon, H., Kurobe, Y., Ono, T., Honda, Y., Koizumi, A., Seino, S., and Yamamoto, T. A., Appl. Catal., A 326, 194 (2007)Google Scholar
Ohkubo, Y., Hamaguchi, Y., Seino, S., Nakagawa, T., Kageyama, S., Kugai, J., Nitani, H., Ueno, K., and Yamamoto, T. A., J. Mater. Sci 48, 5047 (2013).CrossRefGoogle Scholar
Okazaki, T., Seino, S., Nakagawa, T., Kugai, J., Ohkubo, Y., Akita, T., Nitani, H., and Yamamoto, T. A., Radiat. Phys. Chem. 108, 1 (2015).Google Scholar
Seino, S., Kinoshita, T., Nakagawa, T., Kojima, T., Taniguci, R., Okuda, S., and Yamamoto, T. A., J. Nanopart. Res. 10, 1071 (2008).Google Scholar
Ohkubo, Y., Kageyama, S., Seino, S., Nakagawa, T., Kugai, J., Nitani, H., Ueno, K., and Yamamoto, T. A., J. Nanopart. Res. 15, 1597 (2013).Google Scholar
Schneider, A. and Esch, U., Ztschr. Elektrochem, 50, 290 (1944).Google Scholar
Kugai, J., Kitagawa, R., Seino, S., Nakagawa, T., Ohkubo, Y., Nitani, H., Daimon, H., and Yamamoto, T. A., Appl. Catal. A 406, 43 (2011).Google Scholar
Woods, R. J. and Pikaev, A. K., Applied Radiation Chemistry: Radiation Processing, (Wiley-Interscience, New York, 1993) pp. 168.Google Scholar