Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T13:13:15.309Z Has data issue: false hasContentIssue false

Effect of laser wavelength in PLD in the orientation and thermochromic properties of VO2 (M1) on a glass substrate

Published online by Cambridge University Press:  09 March 2020

BN Masina*
Affiliation:
Council for Scientific and Industrial Research, National Laser Centre, PO BOX 395, Pretoria, 0001, South Africa. School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
AA Akande
Affiliation:
Council for Scientific and Industrial Research, National Laser Centre, PO BOX 395, Pretoria, 0001, South Africa. CSIR NextGen Enterprises and Institutions, Advanced Internet of Things, PO BOX 395, Pretoria, 0001, South Africa.
B Mwakikunga
Affiliation:
Council for Scientific and Industrial Research, National Laser Centre, PO BOX 395, Pretoria, 0001, South Africa.
*
*Author to whom correspondence should addressed, Electronic Email: [email protected]
Get access

Abstract

Highly oriented VO2 (M1) thin films are difficult to produce using non-crystalline substrates. For example, to produce such films on glass has required post-annealing or the use of a ZnO transparent layer. Here, we overcome this challenge and report highly oriented VO2 (M1) in the (100) plane directly on the glass substrate by pulsed laser deposition (PLD). We study the influence of the laser wavelengths (1064, 532, 355 and 266 nm) on the orientation of VO2 (M1) deposited on Corning glass. We find that the laser wavelength of 532 nm leads the most highly a-axis textured VO2 (M1) demonstrating the highest reversible metal-to-insulator at about 62 °C with a lowest hysteresis width of approximately 9 °C. One of the conditions is to select the green 532 nm wavelength laser in PLD as this particular laser wavelength also produces films with highest roughness value (of more than 60 nm) when compared to other wavelengths which produce films of roughness values less than 40 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Morin, R.J., Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett. 3, (1959) 34.CrossRefGoogle Scholar
Nag, J., Haglund, R.F. Jr., Synthesis of vanadium dioxide thin films and nanoparticles, J. Phys.: Condens. Matter 20, (2008) 264016 (14pp).Google Scholar
Masina, B.N., Lafane, S., Wu, L., Akande, A.A., Mwakikunga, B., Abdelli-Messaci, A., Kerdja, T., Forbes, A., Phase-selective vanadium dioxide (VO2) nanostructured thin films by pulsed laser deposition, J. Appl. Phys. 118, (2015) 165308-1 -165308-8.CrossRefGoogle Scholar
Kim, H.K., You, H., Chiarello, R.P., Chang, H.L.M., Zhang, T.J., Lam, D.J., Finite-size effect on the first-order metal-insulator transition in VO2 film grown by metal-organic chemical-vapor deposition, Phys. Rev. B 47, (1993) 12900-12907.CrossRefGoogle Scholar
Griffiths, C.H., Eastwood, H.K., Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide, J. Appl. Phys. 4, (1974) 22012206.CrossRefGoogle Scholar
Rúa, A., Fernández, F.E., Sepúlveda, N., Bending in VO2-coated microcantilevers suitable for thermally activated actuators, J. Appl. Phys. 107, (2010) 074506-1 – 074506-4.CrossRefGoogle Scholar
Suh, J.Y., Lopez, R., Fieldman, L.C., Haglund, R.F., Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films, J. Appl. Phys. 96, (2004) 1209 - 1213.CrossRefGoogle Scholar
Brassard, D., Fourmax, S., Jean-Jacques, M., Kieffer, J.C., EI Khakani, M.A., Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films, Appl. Phys. Lett. 87, (2005) 051910-1 – 051910-3.CrossRefGoogle Scholar
Fan, L.L., Wu, Y.F., Si, C., Zou, C.W., Qi, Z.M., Li, L.B., Pan, G.Q., Wu, Z.Y., Oxygen pressure dependent VO2 crystal film preparation and the interfacial epitaxial growth study, Thin Solids Films 520, (2012) 61246129.CrossRefGoogle Scholar
Jin, P., Yoshimura, K., Tanemura, S., Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films, J. Vac. Sci. Technol. A 15, (1997) 11131117.CrossRefGoogle Scholar
Fukura, M., Zembutsu, S., Miyazawa, S., Preparation of VO2 thin film and its direct optical bit recording characteristics, Appl. Opt. 22, (1983) 265268.Google Scholar
Balberg, I., Abeles, B., Arie, Y., Phase transition in reactively co-sputtered films of VO2-TiO2, Thin Solid Films 24 (2), (1974) 307310.CrossRefGoogle Scholar
Kim, D. H., Kwok, H.S., Pulsed laser deposition of VO2 thin films, Appl. Phys. Lett. 65 (25), (1994) 31883190.CrossRefGoogle Scholar
Muraoka, Y., Hiroi, Z., Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates, Appl. Phys. Lett. 80 (4), (2002) 583585.CrossRefGoogle Scholar
Garry, G., Durand, O., Lordereau, A., Structural, electrical and optical properties of pulsed laser deposited VO2 thin films on R- and C-sapphire planes, Thin Solid Films 453-454, (2004) 427430.CrossRefGoogle Scholar
Chiu, T.-W., Tonooka, K., Kikuchi, N., Growth of b-axis oriented VO2 thin films on glass substrates using ZnO buffer layer, Applied Surface Science 256, (2010) 6834-6837.CrossRefGoogle Scholar
Chiu, T.-W., Hong, R.-T., Tonooka, K., Kikuchi, N., Microstructure of orientation controlled VO2 thin film via ZnO buffer, Thin Solid Films 529, (2013) 119-122.CrossRefGoogle Scholar
Zhang, Y., Wang, R., Qiu, Z., Wu, X., Li, Y., Growth of a-axis oriented vanadium dioxide polycrystals on glass substrates, Mater. Lett. 131, (2014) 4244.CrossRefGoogle Scholar
Ngom, B.D., Chaker, M., Diallo, A., Madiba, I.G., Khamlich, S., Manyala, N., Nemraoui, O., Madjoe, R., Beye, A.C., Maaza, M., Competitive growth texture of pulsed laser deposited vanadium dioxide nanostructures on a glass substrate, Acta Mater. 65, (2014) 3241.CrossRefGoogle Scholar
Diallo, A., Ndiaye, N.M., Ngom, B.D.; Khamlich, S., Talla, K., Ndiaye, S., Nemraoui, O., Madjoe, R., Beye, A.C., Maaza, M., Effect of substrate temperature on the structure and the metal insulator transition in pulsed laser deposed VO2 films on soda lime glass, J. Opt. 44 (1), (2015) 3644.CrossRefGoogle Scholar
Liu, H., Vasquez, O., Santiago, V.R., Diaz, L., Rua, A.J., Fernandez, F.E., Novel pulsed-laser-deposition-VO2 thin films for ultrafast applications, J. Electron. Mater. 34 (5), (2005) 491496.CrossRefGoogle Scholar
Dejene, F.B., Ocaya, R.O., Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate, Current Appl. Phys. 10, (2010) 508512.CrossRefGoogle Scholar
Jian, J., Zhang, W., Jacob, C., Chen, A., Wang, H., Huang, J., Wang, H., Roles of grain boundaries on the semiconductor to metal phase transition of VO2 thin films, Appl. Phys. Lett. 107, (2015) 102015.CrossRefGoogle Scholar
Pei-ran, Z., Yamamoto, S., Miyashita, A., Naramoto, H., Pulsed laser deposition of VO2 single crystal thin films on sapphire substrates, Chin. Phys. Lett. 15 (12), (1998) 904906.Google Scholar
Silversmit, G., Depla, D., Poelman, H., Marin, G.B., De Gryse, R., Determination of the V2p XPS binding energies for different vanadium oxidation states (V 5+ to V 0+), J. Electron Spectrosc. Relat. Phenom. 135, (2004) 167175.CrossRefGoogle Scholar
Sawatzky, G.A., Post, D., X-ray photoelectron and Auger spectroscopy study of some vanadium oxides, Phys. Rev. B 20, (1979) 15461555.CrossRefGoogle Scholar
Mendialdua, J., Casanova, R., Barbaux, Y., XPS studies of V2O5, V6O13, VO2 and V2O3, J. Electron Spectrosc. Relat. Phenom, 71 (3), (1995) 249261.CrossRefGoogle Scholar
Demeter, M., Neumann, W., Reichelt, W., Mixed-valence vanadium oxides studies by XPS, Surf. Sci. 454-456, (2000) 4144.CrossRefGoogle Scholar
Begishev, A.R., Galiev, G.B., Ignat’ev, A.S., Mokerov, V.G., Poshin, V.G., Effect of violation of crystalline lattice periodicity on semiconductor-metal phase transition in vanadium dioxide, Fizika Tverdogo Tela 20 (6), (1978) 16431650.Google Scholar
Akande, A.A., Linganiso, E.C., Dhonge, B.P., Rammutla, K.E., Machatine, A., Mwakikunga, B.W., Phase evolution of vanadium oxides obtained through temperature programmed calcinations of ammonium vanadate in hydrogen atmosphere and their humidity sensing properties, Mater. Chem. Phys. 151, (2015) 206214.CrossRefGoogle Scholar
Cao, X., Wang, N., Law, J.Y., Loo, S.C.J., Magdassi, S., Long, Y., Nanoporous thermochormoic VO2 (M) thin films: controlled porosity, largely enhanced luminous transmittance and solar modulating ability, Langmuir 30, (2014) 17101715.CrossRefGoogle Scholar
Lopez, R., Haynes, T.E., Boatner, L.A., Feldman, L.C., Haglund, R.F. Jr., Size effects in the structural phase transition of VO2 nanoparticles, Phys. Rev. B. 65, (2002) 224113-1 – 224113-5.CrossRefGoogle Scholar
Donev, E.U., Ziegler, J.I., Haglund, R.F. Jr., Feldman, L.C., Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering, J. Opt. A: Pure Appl. Opt. 11, (2009) 125002 (8pp).CrossRefGoogle Scholar
Maaza, M., Nemraoui, O., Sella, C., Beye, A.C., Surface plasmon resonance tenability in Au-VO2 thermochromic nano-composites, Gold Bulleting 38 (3), (2005), 100106.CrossRefGoogle Scholar