Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T06:25:54.789Z Has data issue: false hasContentIssue false

The Effect of Electron Irradiation on the Structure of Sodium Aluminum-Iron Phosphate Glasses

Published online by Cambridge University Press:  20 February 2017

S.V. Stefanovsky*
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
O.I. Stefanovsky
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
M.I Kadyko
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
V.A. Zhachkin
Affiliation:
Moscow State Regional University
L.D. Bogomolova
Affiliation:
Research Institute of Nuclear Physics, Lomonosov Moscow State University
*
Get access

Abstract

Glasses of the series (mol.%) 40 Na2O, (20-x) Al2O3, x Fe2O3, 40 P2O5 were irradiated with 8 MeV electrons to doses equivalent of 0.1, 0.5, and 1.0 MGy and characterized by FTIR spectroscopy and ESR at room temperature. FTIR spectra of all the glasses consist of strong bands due to O-P-O stretching modes in (PO4)3- and (P2O7)4- units at 1000-1200 cm-1, P-O-P stretching modes at 900-950 cm-1as) and 700-750 cm-1s), and bending modes in the PO4 units. The wavenumber range lower 800 cm-1 has some contribution due to stretching modes in MO4 and MO6 (M = Al, Fe) units. Moreover the bands at 3300-3700 cm-1 and 1550-1650 cm-1 due to stretching and bending modes in both absorbed and structurally bound H2O molecules were present. As irradiation dose increases the bands due to stretching and bending modes in water molecules and M-O-H bonds become stronger and are split. No essential changes with increasing dose were observed within the spectral range of stretching modes of the O-P-O and P-O-P bonds. Irradiation yields phosphorus-oxygen hole centers - PO42- (D5) and PO42- (D6), and PO32- ion-radicals (D2) observable in ESR spectra of low-Fe glasses. At x>5 their responses are overlapped with strong broad line due to Fe(III). On the whole, with the increase in iron content the glass structural evolution decrease.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Remizov, M.B., Kozlov, P.V., Logunov, M.V., Koltyshev, V.K., Korchenkin, K.K., Problems Radiat. Safety (Russ.) [3] 17 (2014).Google Scholar
Vashman, A.A., Pronin, I.S., Samsonov, V.E., Filin, V.M., Polyakov, A.S., Borisov, G.B., Borisova, Z.S., Volchek, Yu.Yu., Atomic Energy, 76 (1995) 449.CrossRefGoogle Scholar
Mogus-Milankovic, A., Gajovic, A., Santic, A., Day, D.E., J. Non-Cryst. Solids. 289, 204 (2001).Google Scholar
Karabulut, M., Melnik, E., Stefan, R., Marasinghe, G.K., Ray, C.S., Kurkjan, C.R., Day, D.E., J. Non-Cryst. Solids. 288, 8 (2001).Google Scholar
Russo, D.O., Rodriguez, D.S., Rincon, J.M. Romero, L., M., Gonzles Oliver, C.J.R., J. Non-Cryst. Solids. 354, 1541 (2008).CrossRefGoogle Scholar
Glazkova, Ya.S., Kalmykov, S.N., Presnyakov, I.A., Sobolev, A.V., Stefanovskaya, O. I., Stefanovsky, S.V., Vinokurov, S. E., Myasoedov, B. F., Doklady Phys. Chem. 463, 145 (2015).Google Scholar
Stefanovsky, S.V., Stefanovsky, O.I., Kadyko, M.I., Presnyakov, I.A., Myasoedov, B.F., J. Non-Cryst. Solids. 425, 138 (2015).Google Scholar
Beekenkamp, P.. Color Centres in Borate, Phosphate and Borophosphate Glasses. Ph.D. Thesis, Technical University, Eindhoven, 1965. 117 p.Google Scholar
Starodubtsev, V.A., Shiyan, L.N., Zausayeva, N.N., Glass Phys. Chem. (Russ.) 16, 165 (1990).Google Scholar
Stefanovsky, S.V., Ivanov, I.A., Gulin, A.N., Glass Phys. Chem. 20, 103 (1994).Google Scholar
Sun, K., Ding, T., Wang, L.M., Ewing, R.C., Mater. Res. Soc. Symp. Proc. 792, R3.21.1 (2004).Google Scholar
Sun, K., Wang, L.M., Ewing, R.C., Mater. Res. Soc. Symp. Proc. 807, 121 (2004).Google Scholar
Sun, K., Wang, L.M., Ewing, R.C., Weber, W.J., Phil. Mag. 85, 597 (2005).Google Scholar
Jegadeesan, P., Amirthapandian, S., Joseph, K., David, C., Panigrahi, B.K., Kutty, K.V.G., Adv. Mater. Lett. 6, 224 (2015).Google Scholar
Phosphate Glasses with Radioactive Waste, Vashman, A.A. and Polyakov, A.S. (eds.), Moscow, 1997.Google Scholar
Stefanovsky, S.V., Presniakov, I.A., Sobolev, A.V., Kadyko, M.I., Stefanovsky, O.I., J. Nucl. Mater. (in press.)Google Scholar
Lazarev, A.N., Mirgorodsky, A.P., Ignat’ev, I.S.. Vibrational Spectra of Complex Oxides (Russ). Leningrad, 1975.Google Scholar
Plyusnina, I.I., Infrared Spectra of Minerals (Russ.), Moscow, 1977.Google Scholar
Olivier, F.Y., Boizot, B., Glaleb, D., Petite, G., J. Non-Cryst. Solids. 351, 1061 (2008).CrossRefGoogle Scholar
Griscom, D.L., J. Non-Cryst. Solids. 40, 211 (1980).Google Scholar
Starodubtsev, V.A., Zavadovskaya, E.K., Int. J. Radiat. Appl. Instr. C. Radiat. Phys. Chem. 27, 395 (1986).Google Scholar
Bershov, L.V., Samoilovich, M.I., Lushnikov, V.G., Tarashchan, A.N., J. Struct. Chem. (Russ.) 9, 309 (1968).Google Scholar
Kornienko, L.S., Denker, B.I., Osiko, V.V., Rybaltovskii, A.O., Tikhomirov, V.A., Glass Phys. Chem. (Russ) 10, 529 (1984).Google Scholar
Stefanovsky, S.V., Alexandrov, A.I., Pikaev, A.K., Glass Phys. Chem. (Russ) 16, 48 (1990).Google Scholar
Starodubtsev, V.A., Shiyan, L.N., Portnyagin, A.S., Zausayeva, N.N., Glass Phys. Chem. (Russ.) 17, 165 (1991).Google Scholar
Pukhkaya, V., Trompier, F., Ollier, N., J. Appl. Phys. 116, 123517 (2014). Van Wazer, J.R., Phosphorus and its Compounds, vol. 1, Interscience, New York, 1958.Google Scholar