Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T13:44:32.294Z Has data issue: false hasContentIssue false

Effect of dielectric character of electron transporting materials on the performance of organic light-emitting diodes

Published online by Cambridge University Press:  19 April 2018

Rohit Ashok Kumar Yadav
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Deepak Kumar Dubey
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Sun-Zen Chen
Affiliation:
Center for Nanotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
Sujith Sudheendran Swayamprabha
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Tzu-Wei Liang
Affiliation:
Global Science Instruments Co. Ltd., Hsinchu 30013, Taiwan
Jwo-Huei Jou*
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
*
Get access

Abstract

Organic light-emitting diodes (OLEDs) have progressively attracted generous attention because of their versatile applications in solid state lighting and full color displays. High-efficiency is crucial for OLED devices being energy saving and to have a longer lifespan. Numerous approaches have been attempted to attain high-efficiency OLEDs via newly synthesized organic materials, light-extraction structure design and energy-efficient device architectures. The organic materials used in optoelectronic devices have inherently low dielectric constant. In this work, we demonstrate a comprehensive model to quantitatively investigate the role of dielectric constant of the electron transporting material on the electric field distribution, charge drift and exciton recombination probability across the emissive layer (EML) and electron transport layer (ETL) in organic light-emitting diode via commercialized electrical simulation package SETFOS.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Im, Y., Byun, S.Y., Kim, J. H., Lee, D. R., Oh, C. S., Yook, K. S. and Lee, J. Y., Adv. Funct. Mater. 27, 1603007 (2017).CrossRefGoogle Scholar
Mu, Y., Zhang, S., Yue, S., Wu, Q. and Zhao, Y., Solid State Electronics 114, 87 (2015).CrossRefGoogle Scholar
Jou, J. H., Kumar, S., Agrawal, A., Li, T. H. and Sahoo, S., J. Mater. Chem. C 3, 2974 (2015).CrossRefGoogle Scholar
Malliaras, G. G. and Scott, J. C., J. Appl. Phys. 83, 5399 (1998).CrossRefGoogle Scholar
Geffroy, B., Roy, P. and Prat, C, Polym. Int. 55, 572 (2006).CrossRefGoogle Scholar
Pettinen, A., Aho, T., Smolander, O. P., Manninen, T., Saarinen, A., Taattola, K. L., Harja, O. Y. and Linne, M. L., Bioinformatics 21, 357 (2005).CrossRefGoogle Scholar
Liang, H. and Zhuang, W., Energies 7, 2027 (2014).CrossRefGoogle Scholar
Ingram, G. L. and Lu, Z. H., J. of Photonics for Energy 4, 40993 (2014).CrossRefGoogle Scholar
Zhu, X. J., Shang, J. and Liu, G., Chin. Sci. Bull. 59, 2363 (2014).CrossRefGoogle Scholar
Zhang, L., Li, X. L., Luo, D., Xiao, P., Xiao, W., Song, Y., Ang, Q and Liu, B., Materials 10, 1378 (2017).CrossRefGoogle ScholarPubMed
Wang, F., Liu, S. and Zhang, C., Microelectronics 38, 259 (2007).CrossRefGoogle Scholar
Lee, Y. H., Kim, W. J., Cho, K. S., Lee, J. Y. and Hong, J. W., J. of the Korean Physical Society 53, 1460 (2008).CrossRefGoogle Scholar
Cao, J. S., Guan, M., Cao, G. H., Ping, Z. Y., Min, L. J. and Shan, Q. D., Chin. Phys. Lett. 25, 179 (2008).Google Scholar
Torabi, S., Jahani, F., Severen, I. V., Kanimozhi, C., Patil, S., A Havenith, R. W., Chiechi, R. C., Lutsen, L., Vanderzande, D. J. M., Cleij, T. J., Hummelen, J. C. and Koster, L. J. A., Adv. Funct. Mater. 25, 150 (2015).CrossRefGoogle Scholar
Debye, P., Chemical Catalog, New York, 172 (1929).Google Scholar
Morgan, S. O. and Yager, W. A., Ind. Eng. Chem. 32, 1519 (1940).CrossRefGoogle Scholar
Kuang, W. and Nelson, S. O., J. of Microwave Power and Electromagnetic Energy 32, 114 (1997).CrossRefGoogle Scholar
Pommerehne, J., Vestweber, H., Tak, Y. H. and Bassler, H., Synth. Met. 76, 654 (1996).CrossRefGoogle Scholar
Burin, A. L. and Ratner, M. A., J. Phys. Chem. A 104, 4704 (2000).CrossRefGoogle Scholar
Sharifi, M. J. and Gooraji, F. A., J. of Organic Semiconductors 1, 1 (2014).CrossRefGoogle Scholar
Armin, A., Stoltzfus, D. M., Donaghey, J. E., Clulow, A. J., Nagiri, R. C. R., Burn, P. L., Gentle, I. R. and Meredith, P., J. Mater. Chem. C 5, 3736 (2017).CrossRefGoogle Scholar