Article contents
Effect of Boron Addition on Magnetic-Domain Structure of Rapidly Quenched Zr2Co11−Based Nanomaterials
Published online by Cambridge University Press: 02 May 2016
Abstract
The boron-content dependence of magnetic domain structures and magnetic properties of nanocrystalline Zr16Co82.5−x Mo1.5Bx (x = 0, 1, 2, 3, 4) melt-spun ribbons have been investigated. Compared to x = 0, the smaller average domain size with a relatively short magnetic correlation length of 120 nm and largest root-mean-square phase shift value of 0.94° are observed for x = 1. The best magnetic properties of coercivity H c = 5.4 kOe, maximum energy product (BH) max = 4.1 MGOe, and saturation polarization J s = 7.8 kG, were obtained for the ribbon with x = 1. The optimal B addition enhances the content of hard magnetic phase, promotes magnetic domain structure refinement, and increases the surface roughness, results in the enhancement of magnetic anisotropy, and thus leads to a significant increase in coercivity and energy product in this sample.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2016
References
REFERENCES
- 2
- Cited by