Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T22:39:57.525Z Has data issue: false hasContentIssue false

The Effect of A-Site Cation on the Formation of Brannerite (ATi2O6, A = U, Th, Ce) Ceramic Phases in a Glass-Ceramic Composite System

Published online by Cambridge University Press:  23 December 2019

Malin C. Dixon Wilkins*
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield, UK
Martin C. Stennett
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield, UK
Neil C. Hyatt
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield, UK
*
Get access

Abstract

A range of stoichiometric and mixed A-site cation brannerite glass-ceramics have been synthesised and characterised. The formation of UTi2O6 in glass is reliant on ensuring all uranium remains tetravalent by processing in an inert atmosphere. ThTi2O6 forms in glass under both inert and oxidising atmospheres due to the lack of other easily available oxidation states. CeTi2O6 could not be made to form within this glass system. The formation of A0.5B0.5Ti2O6 phases depends strongly on the oxidation states of the A and B cations available in the process atmosphere, with the most successful compositions having an average final oxidation state of (A,B)4+. Mixed cation brannerite compositions that formed in argon include U0.75Th0.25Ti2O6 and U0.71Ce0.29Ti2O6. Those forming in air include U0.23Th0.77Ti2O6, Th0.37Ce0.63Ti2O6, and U0.41Ce0.59Ti2O6.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vance, E.R., Carter, M.L., Lumpkin, G.R., Day, R.A., and Begg, B.D., Solid Solubilities of Pu, U, Gd and Hf in Candidate Ceramic Nuclear Wasteforms (Australian Nuclear Science and Technology Organization, Menai, NSW 2234, Australia (US), 2001).10.2172/781161CrossRefGoogle Scholar
Gotman, Y.D. and Khapaev, I.A., Zap Vses Miner. Obshch 87, 201 (1958).Google Scholar
Lumpkin, G.R., Leung, S.H.F., and Ferenczy, J., Chem. Geol. 291, 55 (2012).10.1016/j.chemgeo.2011.09.008CrossRefGoogle Scholar
Charalambous, F.A., Ram, R., Pownceby, M.I., Tardio, J., and Bhargava, S.K., Miner. Eng. 39, 276 (2012).10.1016/j.mineng.2012.08.006CrossRefGoogle Scholar
Patchett, J.E. and Nuffield, E.W., Can. Minerol. 6, 483 (1960).Google Scholar
Kaiman, S., Can. Mineral. 6, 389 (1959).Google Scholar
Vance, E.R., Watson, J.N., Carter, M.L., Day, R.A., and Begg, B.D., J. Am. Ceram. Soc. 84, 141 (2001).10.1111/j.1151-2916.2001.tb00621.xCrossRefGoogle Scholar
James, M. and Watson, J.N., J. Solid State Chem. 165, 261 (2002).10.1006/jssc.2002.9519CrossRefGoogle Scholar
James, M., Carter, M.L., and Watson, J.N., J. Solid State Chem. 174, 329 (2003).10.1016/S0022-4596(03)00230-5CrossRefGoogle Scholar
Bailey, D.J., Stennett, M.C., and Hyatt, N.C., Procedia Chem. 21, 371 (2016).10.1016/j.proche.2016.10.052CrossRefGoogle Scholar
Bailey, D.J., Stennett, M.C., and Hyatt, N.C., MRS Adv. 2, 557 (2017).10.1557/adv.2016.631CrossRefGoogle Scholar
Zhang, Y., Wei, T., Zhang, Z., Kong, L., Dayal, P., and Gregg, D.J., J. Am. Ceram. Soc. 102, 7699 (2019).10.1111/jace.16657CrossRefGoogle Scholar
Zhang, Y., Kong, L., Karatchevtseva, I., Aughterson, R.D., Gregg, D.J., and Triani, G., J. Am. Ceram. Soc. 100, 4341 (2017).10.1111/jace.14975CrossRefGoogle Scholar
Zhang, Y., Karatchevtseva, I., Kong, L., Wei, T., and Zhang, Z., J. Am. Ceram. Soc. 101, 5219 (2018).10.1111/jace.15750CrossRefGoogle Scholar
Zhang, Y., Kong, L., Aughterson, R.D., Karatchevtseva, I., and Zheng, R., J. Am. Ceram. Soc. 100, 5335 (2017).10.1111/jace.15051CrossRefGoogle Scholar
Kong, L., Karatchevtseva, I., and Zhang, Y., J. Eur. Ceram. Soc. 37, 4963 (2017).10.1016/j.jeurceramsoc.2017.06.051CrossRefGoogle Scholar
Maddrell, E., Thornber, S., and Hyatt, N.C., J. Nucl. Mater. 456, 461 (2015).10.1016/j.jnucmat.2014.10.010CrossRefGoogle Scholar
Paknahad, E. and Grosvenor, A.P., Solid State Sci. 74, 109 (2017).10.1016/j.solidstatesciences.2017.10.013CrossRefGoogle Scholar
Paknahad, E. and Grosvenor, A.P., Can. J. Chem. 95, 1110 (2017).10.1139/cjc-2016-0633CrossRefGoogle Scholar
Zhang, Y., Karatchevtseva, I., Qin, M., Middleburgh, S.C., and Lumpkin, G.R., J. Nucl. Mater. 437, 149 (2013).10.1016/j.jnucmat.2013.02.004CrossRefGoogle Scholar
Szymanski, J.T. and Scott, J.D., Can. Mineral. 20, 271 (1982).Google Scholar
Finnie, K.S., Zhang, Z., Vance, E.R., and Carter, M.L., J. Nucl. Mater. 317, 46 (2003).10.1016/S0022-3115(03)00004-7CrossRefGoogle Scholar
Zhang, Y., Gregg, D.J., Lumpkin, G.R., Begg, B.D., and Jovanovic, M., J. Alloys Compd. 581, 665 (2013).CrossRefGoogle Scholar
Schreiber, H. and Balazs, G., Phys. Chem. Glas. 23, 139 (1982).Google Scholar
Schreiber, H., Balazs, G., Jamison, P., and Shaffer, A., Phys. Chem. Glas. 23, 147 (1982).Google Scholar