Published online by Cambridge University Press: 08 June 2016
To reduce the amount of chalcogen needed in the post-annealing process, we demonstrate significantly increased sulfur incorporation into pure sulfide CZTS films achieved by increasing the thiourea content of DMSO-based precursor solution. The increase of sulfur content was confirmed by thermogravimetric analyses (TGA). To understand how the elemental distribution across the CZTS layer is affected by extra thiourea, a systematic compositional study was carried out using X-ray photoelectron spectroscopy (XPS). XPS depth profiling reveals increased sulfur incorporation in the final CZTS films when more thiourea is added to the solution. The grain size was reduced slightly with increased sulfur content and the surface morphology was changed significantly. The effect on the surface of the CZTS film has been investigated using scanning electron microscopy (SEM), Raman spectroscopy, and XPS. External-quantum-efficiency (EQE) measurements with an electrolyte contact were used to investigate the optoelectronic properties of the deposited CZTS films.