Published online by Cambridge University Press: 11 February 2016
By reducing the number of dimensions that light can propagate in from three down to two, one may gain control over the characteristics of propagation. This control can allow for “Stopped Light” (SL), where wavepackets of light are slowed down to a zero group velocity. This is achieved by designing planar metal-dielectric structures that are stacked in one dimension allowing for waveguide modes in the other two, and engineering the dispersion relation of these structures. Stopped light structures can be further optimized to reduce their dispersion and increase the number of spatial frequencies supported, which allows for confinement of electromagnetic energy over volumes smaller than the diffraction limit over fixed regions in space. If this electromagnetic energy is confined over a region that provides gain, the question arises, can amplification of this light energy occur? and indeed can a regime of lasing be entered into? We show that stopped light lasing is indeed possible, despite there being no resonant cavity in 2d to confine the light, and explore the properties of this new type of laser.