No CrossRef data available.
Article contents
Dynamic Mechanical Analysis of Acrylic Copolymer-TiO2 Nanoparticles
Published online by Cambridge University Press: 07 September 2017
Abstract
The field of composites materials has evolved from the use of traditional fillers (e.g. carbon and glass fibers) to nanoscale fillers that add unique and often multifunctional properties to the neat polymer. Because nanoparticles have extremely high surface to volume ratios, that alter the mobility of polymer chains near their interfaces, even a small addition of nanoparticles. These components have the potential to drastically transform the properties of the host polymers. While the last decade has observed several advances in the field of nanocomposites, some recent reviews have made it clear that definitive structure-property relationships are insufficient in the literature. The influence of inorganic TiO2 nanoparticles on the dynamic mechanical properties and microstructure of copolymer based on Butyl acrylate - Methyl methacrylate - Acrylic Acid has been investigated. The mechanical relaxations of the reinforced copolymer/TiO2 composites were studied under tension mode. Addition of TiO2 nanoparticles to acrylic copolymer produced a decrease in the glass transition temperature. Dynamic mechanical analysis (DMA) showed that the local motions associated with the alpha-transition (40°C) are enhanced as the frequency of oscillation increases, i.e. the tan d maximum increases at higher frequencies. The addition of TiO2 nanoparticles reduces significantly the strength of the alpha-transition. Thus, the cooperative molecular motions involving segments of the molecular chains associated with the alpha-transition were compromised by the presence of TiO2 nanoparticles resulting in a decrement of the storage modulus.
Keywords
- Type
- Articles
- Information
- MRS Advances , Volume 2 , Issue 49: International Materials Research Congress XXV , 2017 , pp. 2751 - 2756
- Copyright
- Copyright © Materials Research Society 2017