Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T21:24:35.548Z Has data issue: false hasContentIssue false

Dynamic Mechanical Analysis of Acrylic Copolymer-TiO2 Nanoparticles

Published online by Cambridge University Press:  07 September 2017

Rubén Castillo-Pérez*
Affiliation:
Facultad de Química, UNAM, Ciudad Universitaria D.F.04510, MEXICO. Posgrado de Ingeniería, Facultad de Química, UNAM, Ciudad Universitaria D.F, 04519, MEXICO. Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
Mireya L. Hernández-Vargas
Affiliation:
Facultad de Química, UNAM, Ciudad Universitaria D.F.04510, MEXICO. Posgrado de Ingeniería, Facultad de Química, UNAM, Ciudad Universitaria D.F, 04519, MEXICO. Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
Oscar Hernández-Guerrero
Affiliation:
Facultad de Ciencias Químicas e Ingeniería, Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Cuernavaca, Mor.62209, MEXICO. Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
Bernardo F. Campillo-Illanes
Affiliation:
Facultad de Química, UNAM, Ciudad Universitaria D.F.04510, MEXICO. Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
Osvaldo Flores-Cedillo
Affiliation:
Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
*
Get access

Abstract

The field of composites materials has evolved from the use of traditional fillers (e.g. carbon and glass fibers) to nanoscale fillers that add unique and often multifunctional properties to the neat polymer. Because nanoparticles have extremely high surface to volume ratios, that alter the mobility of polymer chains near their interfaces, even a small addition of nanoparticles. These components have the potential to drastically transform the properties of the host polymers. While the last decade has observed several advances in the field of nanocomposites, some recent reviews have made it clear that definitive structure-property relationships are insufficient in the literature. The influence of inorganic TiO2 nanoparticles on the dynamic mechanical properties and microstructure of copolymer based on Butyl acrylate - Methyl methacrylate - Acrylic Acid has been investigated. The mechanical relaxations of the reinforced copolymer/TiO2 composites were studied under tension mode. Addition of TiO2 nanoparticles to acrylic copolymer produced a decrease in the glass transition temperature. Dynamic mechanical analysis (DMA) showed that the local motions associated with the alpha-transition (40°C) are enhanced as the frequency of oscillation increases, i.e. the tan d maximum increases at higher frequencies. The addition of TiO2 nanoparticles reduces significantly the strength of the alpha-transition. Thus, the cooperative molecular motions involving segments of the molecular chains associated with the alpha-transition were compromised by the presence of TiO2 nanoparticles resulting in a decrement of the storage modulus.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Romero-Guzmán, M.E., Romo-Uribe, A., Ovalle-García, E., Olayo, R. and Cruz- Ramos, C., Polym. Adv. Technol. 19 (2008) 11681176.Google Scholar
Romo-Uribe, A., Alvarado-Tenorio, B., Romero-Guzmán, M.E., Rejón, L. and Saldivar-Guerrero, R., Polym. Adv. Technol. 20 (2009) 759767.CrossRefGoogle Scholar
Chorng-Shyan, C., “Principles and applications of emulsion polymerization”. John Wiley & Sons, USA, 2008.Google Scholar
Baghdachi, J., “Smart Coatings. Coatings Research Institute”, Eastern Michigan University, American Chemical Society, Chapter 1, 2009, 38.Google Scholar
Romero-Guzmán, M.E., Flores, O., Flores, A., Romo-Uribe, A., Alvarado-Tenorio, B. and Campillo, B., Polym. Adv. Technol. 22 (2011) 836846.Google Scholar
Provder, T., Baghdachi, J., “Smart Coatings”, Eds. ACS Symposium Series 957; American Chemical Society: Washington, DC, 2007.Google Scholar
Hernandez-Vargas, M.L., Valerio-Cardenas, C., Flores, O., Campillo, B. and Romo-Uribe, A., ACS Polym. Chem. (2011).Google Scholar
Chena, Y., Xu, H. and Sun, T., Advanced Materials Research Vols. 233-235 (2011) 18301833.Google Scholar