Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T05:06:09.007Z Has data issue: false hasContentIssue false

Dissolution kinetics of synthetic LaPO4-monazite in acidic media

Published online by Cambridge University Press:  20 February 2018

Yulia Arinicheva
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425Jülich, Germany
Stefan Neumeier*
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425Jülich, Germany
Felix Brandt
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425Jülich, Germany
Dirk Bosbach
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425Jülich, Germany
Guido Deissmann
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425Jülich, Germany
*
Get access

Abstract

Single-phase monazite-type ceramics are discussed as waste forms for the safe disposal of surplus plutonium or separated minor actinides. To derive a fundamental understanding of the long-term stability of these materials under repository relevant conditions, the dissolution kinetics of synthetic lanthanum monazite (LaPO4) were studied in dynamic dissolution experiments in the temperature range from 50 to 90°C under acidic conditions. The surface area normalised dissolution rates increased with temperature from 3.2·10-5 g m-2 d-1 at 50°C to 1.8·10-4 g m-2 d-1 at 90°C. The apparent activation energy Ea of the dissolution process was determined to be about 44 kJ mol-1, indicating a predominantly surface reaction controlled dissolution process in this temperature range. From thermodynamic considerations it can be inferred that the dissolution of the LaPO4 ceramics is governed by the dissolution of a thin layer of La-rhabdophane (LaPO4 · 0.667H2O) forming at the monazite surface in low temperature aqueous environments.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Ewing, R.C., Proc. Nat. Acad. Sci. USA 96, 34323439 (1999).CrossRefGoogle Scholar
Lumpkin, G.R., Elements 2, 365372 (2006).Google Scholar
Ewing, R.C., Prog. Nucl. Energy 49, 635643 (2007).Google Scholar
Ewing, R.C., Min. Mag. 75, 23592377 (2011).Google Scholar
Deissmann, G., Neumeier, S., Modolo, G. and Bosbach, D., Min. Mag. 76, 29112918 (2012).Google Scholar
Ewing, R.C. and Wang, L.M., Rev. Miner. Geochem. 48, 673699 (2002).Google Scholar
Oelkers, E. and Montel, J.M., Elements 4, 113116 (2008).Google Scholar
Clavier, N., Podor, R. and Dacheux, N., J. Europ. Ceram. Soc. 31, 941976 (2011).CrossRefGoogle Scholar
Dacheux, N., Clavier, N. and Podor, R., Am. Mineral. 98, 833847 (2013).Google Scholar
Schlenz, H., Heuser, J., Neumann, A., Schmitz, S. and Bosbach, D., Z. Kristallog. – Cryst. Mater. 228, 113123 (2013).Google Scholar
Neumeier, S., Arinicheva, Y., Ji, Y., Heuser, J. M., Kowalski, P. M., Kegler, P., Schlenz, H., Bosbach, D. and Deissmann, G., Radiochim. Acta 105, 961984 (2017).CrossRefGoogle Scholar
Oelkers, E.H. and Poitrasson, F., Chem. Geol. 191, 7387 (2002).Google Scholar
Terra, O., Clavier, N., Dacheux, N. and Podor, R., New J. Chem. 27, 957967 (2003).Google Scholar
Brandt, F., Neumeier, S., Schuppik, T., Arinicheva, Y., Bukaemskiy, A., Modolo, G. and Bosbach, D., Prog. Nucl. Energy 72, 140143 (2014).CrossRefGoogle Scholar
Teng, Y., Wang, X., Huang, Y., Wu, L. and Zeng, P., Ceram. Int. 41, 1005710062 (2015).CrossRefGoogle Scholar
Neumeier, S., Arinicheva, Y., Clavier, N., Podor, R., Bukaemskiy, A., Modolo, G., Dacheux, N. and Bosbach, D., Prog. Nucl. Energy 92, 298305 (2016).Google Scholar
Lasaga, A.C., Rev. Miner. 8, 168 (1981).Google Scholar
Lasaga, A.C., J. Geophys. Res. B: Solid Earth 89, 40094025 (1984).Google Scholar
Gausse, C., Szenknect, S., Qin, D.W., Mesbah, A., Clavier, N., Neumeier, S., Bosbach, D. and Dacheux, N., Eur. J. Inorg. Chem. 28, 46154630 (2016).Google Scholar
du Fou de Kerdaniel, E., Clavier, N., Dacheux, N., Terra, O. and Podor, R., J. Nucl. Mater. 362, 451458 (2007).Google Scholar