Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:04:22.070Z Has data issue: false hasContentIssue false

Differential Resistance Analysis – a New Tool for Evaluation of Solid Oxide Fuel Cells Degradation

Published online by Cambridge University Press:  09 November 2017

Zdravko B. Stoynov
Affiliation:
Institute of Electrochemistry and Energy Systems - BAS, 10 Acad. G. Bonchev St., Sofia1113, Bulgaria,
Daria E. Vladikova*
Affiliation:
Institute of Electrochemistry and Energy Systems - BAS, 10 Acad. G. Bonchev St., Sofia1113, Bulgaria,
Blagoy G. Burdin
Affiliation:
Institute of Electrochemistry and Energy Systems - BAS, 10 Acad. G. Bonchev St., Sofia1113, Bulgaria,
Jerome Laurencin
Affiliation:
Universite Grenoble Alpes – CEA/LITEN, 17 rue des Martyrs, 38054, Grenoble, France
Dario Montinaro
Affiliation:
SOLID power S.p.A, Viale Trento 117, 38017Mezzolombardo, Italy
Arata Nakajo
Affiliation:
Institut de Genie Mecanique, Ecole Polytechnique Federale de Lausanne, 1015Lausanne, Switzerland
Paolo Piccardo
Affiliation:
University of Genoa, Department of Chemistry and Industrial Chemistry, I-16146 Genoa, Italy
Alain Thorel
Affiliation:
Centre des Matériaux, MINES-ParisTech, PSL, UMR CNRS 7633 BP 87, France
Maxime Hubert
Affiliation:
Universite Grenoble Alpes – CEA/LITEN, 17 rue des Martyrs, 38054, Grenoble, France
Roberto Spotorno
Affiliation:
University of Genoa, Department of Chemistry and Industrial Chemistry, I-16146 Genoa, Italy
Anthony Chesnaud
Affiliation:
Centre des Matériaux, MINES-ParisTech, PSL, UMR CNRS 7633 BP 87, France
*
Get access

Abstract

Solid Oxide Fuel Cells (SOFCs) are a promising technology that can provide efficient and clean energy production. The general barriers hindering their market entry are durability, i.e. resistance to aging, and costs. In parallel to the deeper insight into the different degradation sources and improved understanding of ageing factors and their interactions, work towards higher accuracy for the assessment and monitoring of real-world fuel cell ageing in necessary. The requirements for operational stability formulate the parameter “degradation rate” (DR). Most often long term durability tests are performed at constant current load and the decrease of the voltage is used for its definition. In this work a new approach based on analysis of the volt-ampere characteristics, named Differential Resistance Analysis (DRA), is presented. It operates with the differential resistance, i.e. with the derivative of the voltage in respect to the current (dU/dI = Rd) which is more sensitive to small deviations and thus increases the sensitivity of the analysis. Two performance indicators are derived (Rd, min and ∆U*) with differing selectivity: ∆U* is more sensitive to activation losses and Rd, min - to transport hindrances. The application of the DRA is demonstrated on examples from measurements in fuel cell and in reverse (fuel cell/electrolyzer) mode, as well as on modeling data. The results show that the method is at least 10 times more sensitive to DR evaluation in comparison with the classical approach.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hjelm, J. in Degradation testing – Quantification and Interpretation (2nd International Workshop on degradation Issues of Fuel Cells, Thessaloniki, GR, 2011).Google Scholar
De Haart, L.G.J., Mougin, J., Posdziech, O., Kiviaho, J. and Menzler, N.H., Fuel Cells 9 (6) 794804 (2009).CrossRefGoogle Scholar
Gemmen, R.S., Williams, M.C. and Gerdes, K, J. Power Sources 184(1), 251259 (2008).CrossRefGoogle Scholar
Hagen, A., Barfod, R., Hendriksen, P. V., Liu, Y.-L. and Ramousse, S., J. Electrochem. Soc. 153(6), A1165A1171(2006).CrossRefGoogle Scholar
Stoynov, Z., Vladikova, D. and Burdin, B., Bulg. Chem. Comm.No, XXX-OOO (2017).Google Scholar
Ivers-Taffee, E and Virkar, A. V. in Electrode Polarizations: High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications 1st Edition , edited by Sighal, S.C. and Kendal, K., Elsevier, New York ( 2003).Google Scholar
Thorel, A., Stoynov, Z., Vladikova, D., Chesnaud, A., Viviani, M. and Presto Patent, S. No 20120156573 (21 June 2012).Google Scholar
Vladikova, D., Stoynov, Z., Raikova, G., Thorel, A., Chesnaud, A., Abreu, J., Viviani, M., Barbucci, A., Presto, S. and Carpanese, P., Electrochim. Acta 56, 79557962 (2011).CrossRefGoogle Scholar
Vladikova, D., Stoynov, Z., Chesnaud, A., Thorel, A., Vivianu, M., Barbucci, A., Raikova, G., Carpanese, P., Krapchanska, M. and Mladenova, E., Int. J. Hydrogen Energy, 39(36), 2156121568 (2014).Google Scholar
Contino, A.R., Dellai, A. and Rolland, M., Int. J. Hydrogen Energy 39(36), 2163821646 (2014).Google Scholar
Nakajo, A., Cocco, A.P., DeGostin, M.B., Peracchio, A.A., Cassenti, B.N., Cantoni, M., Van herle, J. and Chiu, W.K.S., J. Power Sources 325, 786800 (2016).Google Scholar
Laurencin, J., Hubert, M., Ferreira Sanchez, D., Pylypko, S., Morales, M., Morata, A., Morel, B., Montinaro, D., Lefebvre-Joud, F. and Siebert, E., Electrochimica acta 241, 459476 (2017).Google Scholar
Morales, M., Miguel-Pérez, V., Tarancón, A., Slodczyk, A., Torrell, M., Ballesteros, B., Ouweltjes, J.P., Bassat, J.M., Montinaro, D. and Morata, A., J. Power Sources 344, 141151 (2017).CrossRefGoogle Scholar
Laurencin, J., Hubert, M., Couturier, K., Le Bihan, T., Cloetens, P., Lefebvre-Joud, F. and Siebert, E., Electrochimica Acta 174, 1299-1316 (2015).CrossRefGoogle Scholar
Nakajo, A., Kiss, A.M., Cocco, A.P., Harris, W.M., DeGostin, M.B., Greco, F., Nelson, G.J., Peracchio, A.A., Cassenti, B.N., Deriy, A., Wang, S., Chen-Wiegart, Y.-C.K., Wang, J., Van herle, J. and Chiu, W.K.S., ECS Transactions 68(1), 10691081 (2015).Google Scholar
Greco, F., Nakajo, A., Wuillemin, Z. and Van herle, J., ECS Transactions 68(1), 19211931 (2015).Google Scholar
Miguel-Pérez, V., Ouweltjes, J. P., Tarancón, A., Montinaro, D. and Morata, A., ECS Transactions 68, 18031813 (2015).Google Scholar
Bertei, A., Arcolini, G., Nicolella, C. and Piccardo, P., ECS Transactions, 68(1), 28972905 (2015).CrossRefGoogle Scholar
Hubert, M., Laurencin, J., Cloetens, P., Da Silva, J.C., Lefebvre-Joud, F., Bleuet, P., Nakajo, A. and Siebert, E., Solid State Ionics 294, 90107 (2016).CrossRefGoogle Scholar
Piccardo, P., Spotorno, R., Ouweltjes, J.P., Stoynov, Z. and Vladikova, D., ECS Transactions 78(1), 20872098 (2017).CrossRefGoogle Scholar
Vladikova, D., Stoynov, Z., Burdin, B., Raikova, G., Krapchanska, M., Thorel, A., Chesnaud, A., Internat. journal for science, techniques and innovations for the industry 11 (4) 190193 (2017)Google Scholar
Handbook of Test Procedures and Protocols (2017). Available at: http://www.durablepower.eu/index.php/handbook (accessed 29 September 2017).Google Scholar