Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T17:19:41.895Z Has data issue: false hasContentIssue false

DFT Study on the Li Mobility in Li-Ion-Based Solid-State Electrolytes

Published online by Cambridge University Press:  01 June 2017

Md Shafiqul Islam*
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, 901 South National Avenue, Springfield, MO65897, USA.
Paul Simanjuntak
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, 901 South National Avenue, Springfield, MO65897, USA.
Saibal Mitra
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, 901 South National Avenue, Springfield, MO65897, USA.
Ridwan Sakidja
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, 901 South National Avenue, Springfield, MO65897, USA.
*
Get access

Abstract

We have investigated the diffusion mechanisms of Li-ion in amorphous lithium phosphite (LiPO3) with the addition of sulphur. By applying the nudge elastic band (NEB)1 method in crystal LiPO3 and Li3PO4, we have confirmed the ease in diffusion pathways for Li ions in LiPO3 which is quite consistent with the previous theoretical finding. From our diffusion study in 0.5 Li2O- 0.5 P2O5 and 0.4 Li2SO4 –0.6 (Li2O-P2O5) melts above 3000K investigated with ab-initio molecular dynamics (AIMD) has been confirmed by experiments at lower temperatures, we have demonstrated the benefit of S addition in increasing the Li+ mobility. We have also found that the Li2SO4 addition into the glass result in a characteristic shift in Li-ion vibration to a lower vibrational frequency. In addition, the presence of oxygen surrounding the diffusion pathways appears to be essential in assisting the Li+ mobility in both crystalline and amorphous structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin- Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., J. Phys. Condens. Matter 21, 395502 (2009).Google Scholar
Ganguli, M., Bhat, M.H., and Rao, K., Solid State Ionics 122, 23 (1999).Google Scholar
Han, X., Gong, Y., (Kelvin) Fu, K., He, X., Hitz, G.T., Dai, J., Pearse, A., Liu, B., Wang, H., Rubloff, G., Mo, Y., Thangadurai, V., Wachsman, E.D., and Hu, L., Nat. Mater. 1, (2016).Google Scholar
Money, B.K. and Hariharan, K., Appl. Phys. A Mater. Sci. Process. 88, 647 (2007).Google Scholar
Dixit, M., Engel, H., Eitan, R., Aurbach, D., Levi, M.D., Kosa, M., and Major, D.T., J. Phys. Chem. C 119, 15801 (2015).Google Scholar
Lei, X., Wang, J., and Huang, K., J. Electrochem. Soc. 163, A1401 (2016).Google Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
Du, Y. A. and Holzwarth, N. A. W., J. Electrochem. Soc. 154, A999 (2007).Google Scholar
Senevirathne, K., Day, C.S., Gross, M.D., Lachgar, A., and Holzwarth, N.A.W., Solid State Ionics 233, 95 (2013).Google Scholar
Zemann, J., Acta Crystallogr. 13, 863 (1960).CrossRefGoogle Scholar
Yakubovich, O. V. and Urusov, V. ∼S., Crystallogr. Reports 42, 261 (1997).Google Scholar
Guitel, J.C., Acta Crystallogr. Sect. B Struct. 2960 (1976).Google Scholar
Souquet, J.L., Duclot, M., and Levy, M., Solid State Ionics 105, 237 (1998).CrossRefGoogle Scholar
Hester, G., Heitmann, T., Tyagi, M., Rathore, M., Dalvi, A., and Mitra, S., MRS Adv. 1, 3057 (2016).CrossRefGoogle Scholar