Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T01:39:36.586Z Has data issue: false hasContentIssue false

Development of CdCl2 Activation to Minimize Zn Loss from Sputtered Cd1-xZnxTe Thin Films for Use in Tandem Solar Cells

Published online by Cambridge University Press:  12 July 2018

Fadhil K. Alfadhili
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, School for Solar and Advanced Renewable Energy, Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA 43606
Geethika K. Liyanage
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, School for Solar and Advanced Renewable Energy, Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA 43606
Adam B. Phillips*
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, School for Solar and Advanced Renewable Energy, Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA 43606
Michael J. Heben
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, School for Solar and Advanced Renewable Energy, Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA 43606
*
Get access

Abstract

Increasing the band gap of cadmium telluride (CdTe) from 1.48 eV to > 2 eV can be achieved by alloying CdTe with ZnTe. Like CdTe, the alloyed films are expected to allow for low cost production, suggesting that Cd1-xZnxTe could be an ideal top cell for mass produced tandem devices. However, the CdCl2 activation of the alloyed films results in a significant loss of Zn, thereby reducing the bandgap. In this study, we demonstrate a novel CdCl2 activation method that does not result in significant Zn loss. By performing the activation step in a closed, inert environment we are able to avoid oxidation of the Zn in the Cd1-xZnxTe film; furthermore, by including sacrificial Zn in the container, an overpressure of ZnCl2 forms limiting the amount of ZnCl2 formed in the film. Both x-ray diffraction, optical measurements, and Auger spectroscopy show that the CdCl2 treatment with no flowing gas minimizes the loss of Zn from the CZT alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Green, M. A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E. D., Levi, D. H., and Ho-Baillie, A. W. Y., Prog. Photovolt. Res. Appli. 25 (1), 3 (2017).CrossRefGoogle Scholar
Shockley, W. and Queisser, H. J., J. Appl. Phys. 32 (3), 510 (1961).CrossRefGoogle Scholar
Mailoa, J. P., Lee, M., Peters, I. M., Buonassisi, T., Panchula, A., and Weiss, D. N., Energy Environ. Sci. 9 (8), 2644 (2016).CrossRefGoogle Scholar
Coutts, T. J., Emery, K. A., and Scott Ward, J., Prog. Photovolt. Res. Appl. 10 (3), 195 (2002).CrossRefGoogle Scholar
Rohatgi, A., Ringel, S. A., Sudharsanan, R., Meyers, P. V., Liu, C. H., and Ramanathan, V., Sol. Cells 27 (1), 219 (1989).CrossRefGoogle Scholar
Ferekides, C. S., Mamazza, R., Balasubramanian, U., and Morel, D. L., Thin Solid Films 480-481, 471 (2005).CrossRefGoogle Scholar
Hyun Lee, S., Gupta, A., Wang, S., Compaan, A. D., and McCandless, B. E., Sol. Energy Mater. Sol. Cells 86 (4), 551 (2005).CrossRefGoogle Scholar
Song, T., Kanevce, A., and Sites, J. R., J. Appl. Phys. 119 (23), 233104 (2016).CrossRefGoogle Scholar
Shimpi, T. M., Kephart, J. M., Swanson, D. E., Munshi, A. H., Sampath, W. S., Abbas, A., and Walls, J. M., J. Vac. Sci. Technol. A 34 (5), 051202 (2016).CrossRefGoogle Scholar
Kim, H. and Kim, D., Sol. Energy Mater. Sol. Cells 67 (1–4), 297 (2001).CrossRefGoogle Scholar
Phillips, A. B., Khanal, R. R., Song, Z., Zartman, R. M., DeWitt, J. L., Stone, J. M., Roland, P. J., Plotnikov, V. V., Carter, C. W., Stayancho, J. M., Ellingson, R. J., Compaan, A. D., and Heben, M. J., Nano Lett. 13 (11), 5224 (2013).CrossRefGoogle Scholar
Dhere, R., Gessert, T., Zhou, J., Asher, S., Pankow, J., and Moutinho, H., Mater. Res. Soc. Symp. Proc. 763, B8.25 (2003).CrossRefGoogle Scholar
Mohanty, D., Su, P.-Y., Wang, G.-C., Lu, T.-M., and Bhat, I. B., Sol. Energy 135, 209 (2016).CrossRefGoogle Scholar
Liyanage, G. K., Phillips, A. B., Alfadhili, F. K., Heben, M. J., presented at the 2018 MRS spring meeting, Phoenix, AZ, 2018 (unpublished)Google Scholar
Chu, T.L., Chu, S.S., Ferekides, C., Britt, J., J. Appl. Phys. 71 (11) (1992) 56355640.CrossRefGoogle Scholar