Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T17:07:48.676Z Has data issue: false hasContentIssue false

Design and Operational Test of Large-sized HTS Magnets with Conduction Cooling System for a 300 kW-class Superconducting Induction Heater

Published online by Cambridge University Press:  04 June 2018

Jongho Choi*
Affiliation:
Supercoil Co., Ltd. Changwon, Korea, 51140
S. K. Kim
Affiliation:
Korea Electrotechnology Research Institute, Changwon, Korea, 51140
Sangho Cho*
Affiliation:
Supercoil Co., Ltd. Changwon, Korea, 51140
Minwon Park
Affiliation:
Chanwon National University, Changwon, Korea, 51140
In-Keun Yu
Affiliation:
Chanwon National University, Changwon, Korea, 51140
*
Get access

Abstract

In this paper, we presented design specifications and operational test results of large-sized high temperature superconducting (HTS) magnets for Superconducting Induction Heater (SIH). HTS magnets were designed and fabricated with the metal insulation method. Critical currents of the HTS magnets were estimated by considering the angular dependency on the magnetic flux density of HTS tape. The characteristic resistance, the charging and discharging time were calculated and measured in the liquid nitrogen and the conduction cooling condition achieved with the 2nd stage GM cryo-cooler. The saturated temperature of the HTS magnet reached at 5.6 K. The performances of the large-sized HTS magnet including cooling and magnetic field characteristics were tested under the conduction cooling. These results were evaluated with those of finite element method analysis results. The characteristic analysis results of the large-sized HTS magnets will be applied for development of the commercial 300 kW SIH.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Runde, M. and Magnusson, N., J. IEEE Trans. Appl. Supercond. 13(2), 16121615, (2003)CrossRefGoogle Scholar
Magnusson, N. and Bersås, R., and Runde, M., J. Proc. Inst. Phys., Conf. Ser., Sep.181, 11041109, (2004)Google Scholar
Fabbri, M. and Morandi, A., J. Comput. Math. Electr. Electron. Eng., 27(2), 480490, (2008)CrossRefGoogle Scholar
Hahn, S., Park, D. K., Bascuñán, J. and Iwasa, Y., J. IEEE Trans. Appl. Supercond., 21(3), 15921595, (2011)CrossRefGoogle Scholar
Wang, X., Hahn, S., Kim, Y., Bascuñán, J., Voccio, J., Lee, H. andIwasa, Y., J. IEEE Trans. Appl. Supercond., 26(3), 035012, (2013)Google Scholar
Hahn, S., Kim, Y., Park, D. K., Kim, K., Voccio, J., Bascuñán, J. and Iwasa, Y., J. Appl. Phys. Let. 103(17), 173511, (2013)CrossRefGoogle Scholar
Hahn, S., Kim, Y., Ling, J., Voccio, J., Park, D.K., Bascuñán, J. and Iwasa, Y., J. IEEE Trans. Appl. Supercond., 23(3) 4601705–4601705, (2013).Google Scholar
Choi, J., Kim, S.K., Kim, S., Sim, K., Park, M. and Yu, I. K., J. IEEE Trans. Appl. Supercond., 26(3), 3700405, (2016).Google Scholar
Yeom, H. K., J. Prog. Supercond. Cryogen., 10(1), 6266, (2008).Google Scholar
Kim, S., Sim, K., Kim, H. J., Bae, J. H., Lee, E. Y., Seong, K. C. and Jeong, S., J. Cryogen. 49(6), 294298, (2009).CrossRefGoogle Scholar
Yeom, H. K., Hong, Y. J., Park, S. J., Seo, T. B., Seong, K. C. and Kim, H. J., J. IEEE Trans. Appl. Supercond., 17(2), 19551958, (2007).CrossRefGoogle Scholar
Kim, K. M., Kim, A. R., Park, H. Y., Kim, J. G., Park, M., Yu, I. K. and Won, Y. J., J. IEEE Trans. Appl. Supercond., 20(3), 19001903, (2010).Google Scholar