Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:43:23.375Z Has data issue: false hasContentIssue false

Degradation of allura red dye using Fe-Zn metal nanoparticles obtained by phytosynthesis method.

Published online by Cambridge University Press:  27 October 2020

José Angel Sanjurjo-García
Affiliation:
Departamento de Materia Condensada. Instituto de Física, Universidad Nacional Autónoma de México, Cd de México, C.P. 04510, México. Tecnológico Nacional de México/ Instituto Tecnológico de Toluca/ División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Toluca. Av. Tecnológico S/N Col Agrícola Bellavista, Metepec, México, C.P. 52149.
Sonia Martínez-Gallegos
Affiliation:
Tecnológico Nacional de México/ Instituto Tecnológico de Toluca/ División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Toluca. Av. Tecnológico S/N Col Agrícola Bellavista, Metepec, México, C.P. 52149.
Pablo Samuel Schabes-Retchkiman
Affiliation:
Departamento de Materia Condensada. Instituto de Física, Universidad Nacional Autónoma de México, Cd de México, C.P. 04510, México.
José Luis García-Rivas
Affiliation:
Tecnológico Nacional de México/ Instituto Tecnológico de Toluca/ División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Toluca. Av. Tecnológico S/N Col Agrícola Bellavista, Metepec, México, C.P. 52149.
Get access

Abstract

In the present work, the photocatalytic activity of metal Fe-Zn nanoparticles was evaluated through the degradation of the synthetic AZO colorant allura red. A Phytosynthesis method developed here takes advantage for the first time of the plant extract of Hydrocotyle ranunculoides as the reducing agent. A fitted Folin-Ciocalteu assay showed about 40% of total polyphenolic compounds used in the nanoparticles generation. UV-Vis and TEM analysis allowed identification of the nanoparticles as oxides of Fe and Zn. Finally, during measurement of the photocatalytic activity a load of 0.5 g/L was applied on a 15 μM solution of allura red as standard model pollutant, while environmental oxygen was used as the initiating agent. Tests showed a 66% degradation of the azo-type dye obeying a degradation kinetics of the first order after short times.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, P., Chan, C., Elimelech, M., Halas, N. & Villagrán, N.. Emerging opportunities for nanotechnology to enhance water security. Nature Nanotech vol. 13, pp. 634641, 2018.CrossRefGoogle ScholarPubMed
Nisar, A., et al. , “Selenide-chitosan as high-performance nanophotocatalyst for accelerated degradation of Pollutants”, International Journal of Biological Macromolecules, 10.1016/j.ijbiomac.2020.07.132, 2020.Google Scholar
Tahir, M., et al. , “Role of nanophotocatalysts for the treatment of hazardous organic and inorganic pollutants in wastewater”, International Journal of Environmental Analytical Chemistry. pp. 1-25, 2020.Google Scholar
Li, G., et al. , “Titania/Electro-Reduced Graphene Oxide Nanohybridas an Ecient Electrochemical Sensor for the Determination of Allura Red”. Nanomaterials vol.10, pp. 307, 2020.CrossRefGoogle ScholarPubMed
Ishwarya, R.. et al. , “Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity”. Journal of Photochemistry & Photobiology, B: Biology vol. 178, pp. 249258, 2018.CrossRefGoogle ScholarPubMed
Fardood, S., Ramazani, A., Moradi, S., Asiabi, P.. “Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light”. J Mater Sci: Mater Electron vol. 28, pp. 1359613601, 2017.Google Scholar
Akinsiku, A., et al. ., “Room temperature Phytosynthesis of Ag/Co bimetallic nanoparticles using aqueous leaf extract of Canna indica”. IOP Conf. Ser.: Earth Environ. Sci. vol 173, pp. 012019, 2019.CrossRefGoogle Scholar
Wang, Y., et al. , “Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors”, Journal of Cleaner Production vol. 226, pp. 540e549, 2019.CrossRefGoogle Scholar
Crane, K., et al. , “Tomorrow Never Dies: biodegradation and subsequent viability of invasive macrophytes following exposure to aquatic disinfectants”, Management of Biological Invasions, vol. 11, No. 1, pp. 2643, 2020.CrossRefGoogle Scholar
Hassan, A., Nawchoo, I.A., Impact of Invasive Plants in Aquatic Ecosystems. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. 2020.Google Scholar
Rui, M., et al. , “Oleanane-type triterpene saponins from Hydrocotyle nepalensis”, Fitoterapia, vol 110, pp. 66-71, 2016.Google Scholar
Długosz, O., Chwastowski, J. and Banach, M. (2019). “Hawthorn berries extract for the green synthesis of copper and silver nanoparticles”. Chem. Pap. 1-14.Google Scholar
Alegria, E., et al. ., “Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and Its Catalytic Activity in the Reduction of Nitro Compounds”. Nanomaterials vol. 8, pp. 320, 2018.CrossRefGoogle ScholarPubMed
Ahmad, T., et al. , “Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: Role of phenolic compounds and flavonoids”. Biotechnol Appl Biochem.vol. 66(4), pp. 698-708, 2019.CrossRefGoogle ScholarPubMed
Alomari, A.. “Ultrasound-assisted Extraction of Phenolic, Flavonoid and Antioxidant Compounds from Dodonaea viscose and Its Green Synthesis of Silver Nanoparticles by Aqueous Extract”. Orient. J. Chem., Vol. 36(1), pp. 179-188, 2020.CrossRefGoogle Scholar
Kamaraj, M., Kidane, T., Muluken, K. & Aravind, J., “Biofabrication of iron oxide nanoparticles as a potential photocatalyst for dye degradation with antimicrobial activity”. Int. J. Environ. Sci. Technol. vol 16, 83058314, 2019.CrossRefGoogle Scholar
Chauhan, P., Shrivastava, V. & Tomar, R., “Biosynthesis of zinc oxide nanoparticles using Cassia siamea leaves extracts and their efficacy evaluation as potential antimicrobial agent”. Journal of Pharmacognosy and Phytochemistry; vol 8 no. 3, pp. 162-166, 2019.Google Scholar
Laguta, I., Stavinskaya, O., Kazakova, O., Fesenko, T. & Brychka, S., “Green synthesis of silver nanoparticles using Stevia leaves extracts”, Appl Nanosci. vol.9, pp. 755765, 2019.CrossRefGoogle Scholar
Ohemeng, P., et al. ., “Iron and silver nanostructures: Biosynthesis, characterization and their catalytic properties”. Nano-Structures & Nano-Objects, vol.22 pp. 100453, 2020.CrossRefGoogle Scholar
Xu, Z., et al. ., “Anticarcinogenic effect of zinc oxide nanoparticles synthesized from Rhizoma paridis saponins on Molt-4 leukemia cells”. Journal of King Saud University – Science vol.32, pp. 18651871, 2020.CrossRefGoogle Scholar
Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R. and Natarajan, S., “Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii”. Journal of Photochemistry & Photobiology, B: Biology. vol. 190, 8697, 2019.CrossRefGoogle ScholarPubMed
Radini, I., Hasan, N., Malik, M. and Khan, Z.. “Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications”. Journal of Photochemistry & Photobiology, B: Biology. vol. 183, pp. 154163, 2018.CrossRefGoogle ScholarPubMed