Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T01:44:19.013Z Has data issue: false hasContentIssue false

Defects Behavior in Disordered Iron Oxide Synthesized from Grain-Oriented Iron Foils

Published online by Cambridge University Press:  22 January 2019

Karen A. Neri*
Affiliation:
Doctorate in Nanoscience and Micro-Nanotechnology, Escuela Superior de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, México. E-mail: [email protected].
José A. Andraca
Affiliation:
Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo (UPIIH), Instituto Politécnico Nacional, Pachuca, Hidalgo, México.
Ramón Peña
Affiliation:
Department of Electrical Engineering, Solid State Electronics Section, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México.
Roberto Baca
Affiliation:
Department of Electronics, Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME), Instituto Politécnico Nacional, Mexico City, México.
*
Get access

Abstract

Disordered iron oxide thin-films synthesized from grain-oriented iron foils were grown on both glass and Si (100) n-type substrates by vacuum evaporation followed by thermal oxidation at low temperatures. Defects such as vacancies formation has been studied using Atomic Force Microscopy (AFM) and Raman Spectroscopy. The kinetic of oxidation as a function of surface parameters was investigated by AFM studies. The vibrational modes (bands) connected with the vacancies formation and magnetic ordering into the iron oxide structure were validated by Raman spectroscopy. Space-charge effects can be influenced by discontinuous growth of iron oxide and correlated with their structure parameters. Finally, the disordered iron oxide will be useful for the next generation of adaptive oxide devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Suzuki, M. and Ami, T., Mater. Sci. Eng. B, vol. 41, no. 1, pp. 166173, (1996).CrossRefGoogle Scholar
Schlom, D. G., Chen, L. Q., Pan, X., Schmehl, A., and Zurbuchen, M. A., J. Am. Ceram. Soc., vol. 91, no. 8, pp. 24292454, (2008).CrossRefGoogle Scholar
Frano, A., Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures. (Springer International Publishing, Switzerland, 2014), pp. 1,2.CrossRefGoogle Scholar
Bjaalie, L., Himmetoglu, B., Weston, L., Janotti, A., and Van De Walle, C. G., New J. Phys., vol. 16, (2014).CrossRefGoogle Scholar
Ha, S. D. and Ramanathan, S., J. Appl. Phys., vol. 110, no. 7, (2011).Google Scholar
Ramirez, A. P., Science 315 (5817), pp. 13771378, (2007).CrossRefGoogle Scholar
Cornell, R. M. and Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, 2nd ed. (WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, 2003), pp. 6, 10, 11, 29, 31, 114, 117, 120, 144, 147, 148, 149, 150.CrossRefGoogle Scholar
Cotton, F. A., Wilkinson, G., Murillo, C. A. and Bochmann, M., Advanced Inorganic Chemistry, 6th ed. (Wiley-Interscience, New York, 1999), pp. 776, 777.Google Scholar
Jubb, A. M. and Allen, H. C., ACS Appl. Mater. Interfaces, vol. 2, no. 10, pp. 28042812, (2010).CrossRefGoogle Scholar
Baca, R., Adv. Mater. Sci. Eng., vol. 2013, (2013).Google Scholar
Littmann, M. F., J. Appl. Phys., vol. 38, no. 3, pp. 11041108, (1967).CrossRefGoogle Scholar
Imkuti, Y., Vacuum, vol. 6–8. pp. 857862, (1996).CrossRefGoogle Scholar
Gich, M. et al. , Adv. Mater., vol. 26, no. 27, pp. 46454652, (2014).CrossRefGoogle Scholar
Baca, R. and Yew Cheong, K., Mater. Sci. Semicond. Process., vol. 29, January, pp. 294299, (2015).CrossRefGoogle Scholar
Lübbe, M., Gigler, A. M., Stark, R. W., and Moritz, W., Surf. Sci., vol. 604, no. 7–8, pp. 679685, (2010).CrossRefGoogle Scholar
W. W., G. K., Ranke, W. and Schlögl, R., Phys. Chem. Chem. Phys., vol. 3, pp. 11141122, (2001).Google Scholar
Chamritski, I. and Burns, G., J. Phys. Chem. B 109, pp. 49654968, (2005).CrossRefGoogle Scholar
Shebanova, O. N. and Lazor, P., J. Raman Spectrosc., vol. 34, no. 11, pp. 845852, (2003).CrossRefGoogle Scholar
Bersani, D., Lottici, P. P., and Montenero, A., J. Raman Spectrosc. 30, pp. 355360, (1999).3.0.CO;2-C>CrossRefGoogle Scholar
Kreisel, J., Lucazeau, G., and Vincent, H., Journal of Solid State Chemistry 137, pp. 127137, (1998).CrossRefGoogle Scholar
Wielant, J., Goossens, V., Hausbrand, R., and Terryn, H., Electrochim. Acta, vol. 52, no. 27 SPEC. ISS., pp. 76177625, (2007).CrossRefGoogle Scholar
Yadhuraj, S. R., Satheesh Babu, G., and Uttara Kumari, M. in Measurement of Thickness and Roughness using Gwyddion, (3rd International Conference on Advanced Computing and Communication Systems ICACCS, Coimbatore, India, 2016).CrossRefGoogle Scholar
Grinberg, A. A., Luryi, S., Pinto, M. R., and Schryer, N. L., IEEE Transactions on Electron Devices, vol. 36, no. 6. pp. 11621170, (1989).CrossRefGoogle Scholar
Leland, J. K. and Bard, A. J., J. Phys. Chem., vol. 91, no. 19, pp. 50765083, (1987).CrossRefGoogle Scholar
Cheeke, J. D. N., MASc. Thesis, The University of British Columbia, 1961.Google Scholar
Tse, S. M. and Ng, K. K., Physics of Semiconductors, 3rd ed. (John Wiley & Sons, Inc., Hoboken, New Jersey, 2007), pp. 86, 89, 170, 214.Google Scholar
Shinde, S. S., Bansode, R. A., Bhosale, C. H., and Rajpure, K. Y., J. Semicond., vol. 32, no. 1, p. 013001, (2011).CrossRefGoogle Scholar
Ansar, M. Z., Atiq, S., Alamgir, K., and Nadeem, S., J. Sci. Res. J. Sci. Res, vol. 6, no. 63, pp. 399406, (2014).CrossRefGoogle Scholar