Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:35:27.477Z Has data issue: false hasContentIssue false

Creating a Novel Graphene Oxide/Iron/Polylactic Acid Composite that Promotes Dental Pulp Stem Cell Proliferation and Mineralization

Published online by Cambridge University Press:  16 April 2018

Rebecca Isseroff*
Affiliation:
Stony Brook University, Stony Brook, NY11794, U.S.A. Lawrence High School, Cedarhurst, NY11516, U.S.A.
John Chen
Affiliation:
Lawrence High School, Cedarhurst, NY11516, U.S.A.
Zaiff Khan
Affiliation:
Lawrence High School, Cedarhurst, NY11516, U.S.A.
Anoushka Guha
Affiliation:
Lawrence High School, Cedarhurst, NY11516, U.S.A.
Simon Lin
Affiliation:
Stony Brook University, Stony Brook, NY11794, U.S.A.
Juyi Li
Affiliation:
Stony Brook University, Stony Brook, NY11794, U.S.A.
Kuan-che Fang
Affiliation:
Stony Brook University, Stony Brook, NY11794, U.S.A.
Linxi Zhang
Affiliation:
Stony Brook University, Stony Brook, NY11794, U.S.A.
Marcia Simon
Affiliation:
Stony Brook School of Dental Medicine, Stony Brook, NY11794, U.S.A.
Miriam Rafailovich
Affiliation:
Stony Brook University, Stony Brook, NY11794, U.S.A.
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dental pulp stem cells (DPSCs) can differentiate into bone cells when provided the correct environment, potentially generating cells to repair non-union fractures. Polylactic Acid (PLA) is a biocompatible polymer for 3-D printing of scaffolds, but DPSCs do not proliferate well on PLA. With the goal of making PLA more conducive for DPSC growth, Graphene Oxide (GO); partially reduced Graphene Oxide (pRGO); GO with iron nanoparticles (FeGO) or Fe-pRGO were incorporated into PLA and spun cast as thin films onto silicon wafers for DPSC plating. DPSCs on Fe-pRGO displayed the fastest doubling time and the highest cell modulus; Fe-pRGO with exterior magnets produced high cell density. SEM demonstrated DPSC mineralization, whereas PLA-only DPSC cultures showed none. Results suggest that PLA/Fe-pRGO and PLA/pRGO enhance DPSC proliferation and possibly differentiation with the potential for use as a 3-D printed scaffold for tissue engineering.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

References

REFERENCES

Zura, R., Xiong, Z., Einhorn, T., Watson, J.T., Ostrum, R.F., Prayson, M.J., Della Rocca, G.J., Mehta, S., McKinley, T., Wang, Z., and Steen, R.G.: Epidemiology of Fracture Nonunion in 18 Human Bones. JAMA Surgery, Vol. 105, pp.e162775, doi:10.1001/jamasurg.2016.2775, (2016).Google Scholar
Nonunions (2014). Available at: orthoinfo.aaos.org/topic.cfm?topic=A00374 (accessed 1 September 2017)Google Scholar
Cochran, D.L: Inflammation and Bone Loss in Periodontal Disease. Journal of Periodontology, Vol 79, pp. 15691576, doi:10.1902/jop.2008.080233, (2008).Google Scholar
Dental Implant Surgery (2016). Available at: www.mayoclinic.org/tests-procedures/dental-implant-surgery/details/risks/cmc-20245747. (accessed 3 September 2017)Google Scholar
Nasser, R.: Stem Cells from Dental Pulp Used to Make Corneal Cells (2015). Available at: http://palmbeachdentistfl.com/ (accessed 4 September 2017)Google Scholar
Tatullo, M., Marrelli, M., Shakesheff, K.M., and White, L.J.: Dental Pulp Stem Cells: Function, Isolation and Applications in Regenerative Medicine. Journal of Tissue Engineering and Regenerative Medicine, Vol. 9, pp.12051216, doi: 10.1002/term.1899, (2014).Google Scholar
Do, A.V., Khorsand, B., Geary, S.M., and Salem, A.K.: 3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced Healthcare Materials, U.S. National Library of Medicine, Vol. 4, pp. 17421762, doi: 10.1002/adhm.201500168, (2015).Google Scholar
Savioli Lopes, M., Jardini, A.L., and Maciel Filho, R.: Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Engineering, Vol. 42, pp. 14021413, doi:10.1016/j.proeng.2012.07.534, (2012).Google Scholar
Langenbach, F., and Handschel, J.: Effects of Dexamethasone, Ascorbic Acid and β-Glycerophosphate on the Osteogenic Differentiation of Stem Cells in Vitro.” Stem Cell Research and Therapy, Vol. 4, pp. 117, doi: 10.1186/scrt328, (2013).Google Scholar
“Dexamethasone Oral (2017).” Available at: medlineplus.gov/druginfo/meds/a682792.html. (accessed 11 September 2017)Google Scholar
Xie, H., Chua, M., Islam, I., Bentini, R., Viana-Gomes, J.C., Castro Neto, A.H., and Rosa, V: CVD-Grown Monolayer Graphene Induces Osteogenic but Not Odontoblastic Differentiation of Dental Pulp Stem Cells. Dental Materials, Vol. 33, pp. E13e21, doi:10.1016/j.dental.2016.09.030, (2017).Google Scholar
Radunovic, M., De Colli, M., De Marco, P., Nisio, C.Di, Fontana, A., Piattelli, A., Cataldi, A., and Zara, S.: Graphene Oxide Enrichment of Collagen Membranes Improves DPSCs Differentiation and Controls Inflammation Occurrence. Shibboleth Authentication Request, J Biomed Mater Res A., Vol. 105, pp. 23122320, doi: 10.1002/jbm.a.36085, (2017).Google Scholar
Kotani, H., Kawaguchi, H., Shimoaka, T., Iwasaka, M., Ueno, S., Ozawa, H., Nakamura, K., and Hoshi, K.: Strong Static Magnetic Field Stimulates Bone Formation to a Definite Orientation In Vitro and In Vivo. Journal of Bone and Mineral Research, Vol. 17, pp. 18141821, doi:10.1359/jbmr.2002.17.10.1814, (2002).Google Scholar
Green, A., Isseroff, R., Lin, S., Wang, L., and Rafailovich, M.: (2017). Synthesis and characterization of iron nanoparticles on partially reduced graphene oxide as a cost-effective catalyst for polymer electrolyte membrane fuel cells. MRS Communications, Vol. 7, Issue 2, pp. 166172, doi:10.1557/mrc.2017.14, (2017).Google Scholar
Milkert, H.: 3D Printed Biodegradable Metal Bone Scaffolding Created (2014): 3DPrint.Com | The Voice of 3D Printing / Additive Manufacturing, 3DR Holdings, Available at: 3dprint.com/1604/3d-printed-biodegradable-metal-bone-scaffolding-created/.Google Scholar
Hummers, W.S., and Offeman, R.E.: Preparation of Graphitic Oxide. Journal of the American Chemical Society, vol. 80, pp. 1339, doi:10.1021/ja01539a017, (1958).Google Scholar
Isseroff, R., Akhavan, B., Pan., C., He., H., Sokolov, J., and Rafailovich, M.: Enhancing the Efficiency of a PEM Hydrogen Fuel Cell with Synthesized Metal-Nanoparticle/Graphene Composites Synergy. MRS Proceedings,Vol. 1658, rr.15-rr26, doi:10.1557/opl.2014.415, (2014).Google Scholar
González-Cruz, R.D., Fonseca, V. C., and Darling, E. M.: Cellular Mechanical Properties Reflect the Differentiation Potential of Adipose-Derived Mesenchymal Stem Cells. Proceedings of the National Academy of Sciences, vol. 109, pp.E1523E1529, doi:10.1073/pnas.1120349109, (2012).Google Scholar
Bongiorno, T., Kazlow, J., Mezencev, R., Griffiths, S., Olivares-Navarrete, R., McDonald, J. F., Schwartz, Z., Boyan, B. D., McDevitt, T. C., and Sulchek, T.: Mechanical Stiffness as an Improved Single-Cell Indicator of Osteoblastic Human Mesenchymal Stem Cell Differentiation. Journal of Biomechanics, vol. 47, pp. 21972204, doi:10.1016/j.jbiomech.2013.11.017, (2015).Google Scholar
Discher, D.E., Janmey, P., Wang, Y.L.. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139 doi: 10.1126/science.1116995 (2005).Google Scholar
Ba, X., Hadjiargyrou, M., Dimasi, E., Meng, Y., Simon, M., Tan, Z., and Rafailovich, M.H., The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films. Biomaterials. 2011 Nov;32(31):7831–8. doi: 10.1016/j.biomaterials.2011.06.053. Epub 2011 Aug 4.CrossRefGoogle ScholarPubMed