Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T20:09:36.808Z Has data issue: false hasContentIssue false

Corundum-Structured α-In2O3 as a Wide-Bandgap Semiconductor for Electrical Devices

Published online by Cambridge University Press:  24 January 2017

Kentaro Kaneko
Affiliation:
Photonics and Electronic Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Masashi Kitajima
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Shizuo Fujita*
Affiliation:
Photonics and Electronic Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
*
Get access

Abstract

Corundum-structured α-In2O3 was grown by mist chemical vapor deposition (CVD) on sapphire substrates with the use of α-Ga2O3 buffer layers. The use of ozone (O3) and thermal annealing in air were effective for improved surface morphology and electrical properties of the α-In2O3 layer. MOSFETs were fabricated using the α-In2O3 layer, where the residual electron concentrations were temporary reduced by doping Mg acceptors. Nevertheless the MOSFETs showed the best field-effect mobility of as high as 187 cm2/V⋅s and the best effective mobility of as high as 240 cm2/V⋅s, suggesting high potential of α-In2O3 MOSFETs.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujita, S., Jpn. J. Appl. Phys. 54, 030101(2015).CrossRefGoogle Scholar
Higashiwaki, M., Murakami, H., Kumagai, Y., and Kuramata, A., Jpn. J. Appl. Phys. 55, 1202A1 (2016).Google Scholar
Kuramata, A., Koshil, K., Watanabe, S., Yamaoka, Y., Masui, T., and Yamakoshi, S., Jpn. J. Appl. Phys. 55, 1202A2 (2016).CrossRefGoogle Scholar
Fujita, S., Oda, M., Kaneko, K., and Hitora, T., Jpn. J. Appl. Phys. 55, 1202A3 (2016).Google Scholar
Sasaki, K., Kuramata, A., Masui, T., Víllora, E. G., Shimamura, K, and Yamakoshi, S., Appl. Phys. Express 5, 035502 (2012).CrossRefGoogle Scholar
Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., and Yamakoshi, S., Appl. Phys. Lett. 100, 013504 (2012).Google Scholar
Sasaki, K., Higashiwaki, M., Kuramata, A., Masui, T., and Yamakoshi, S., IEEE Electron Device Lett. 34, 493 (2013).Google Scholar
Higashiwaki, M., Sasaki, K., Kamimura, T., Wong, M. H., Krishnamurthy, D., Kuramata, A., Masui, T., and Yamakoshi, S., Appl. Phys. Lett. 103, 123511 (2013).Google Scholar
Sasaki, K., Higashiwaki, M., Kuramata, A., Masui, T., and Yamakoshi, S., Appl. Phys. Express 6, 086502 (2013).Google Scholar
Sasaki, K., Higashiwaki, M., Kuramata, A., Masui, T., and Yamakoshi, S., J. Cryst. Growth 392, 30 (2014).Google Scholar
Shinohara, D. and Fujita, S., Jpn. J. Appl. Phys. 47, 7311 (2008).Google Scholar
Akaiwa, K. and Fujita, S., Jpn. J. Appl. Phys. 51, 070203 (2012).Google Scholar
Kaneko, K., Kawanowa, H., Ito, H, and Fujita, S., Jpn. J. Appl. Phys. 51, 020201 (2012).Google Scholar
Fujita, S. and Kaneko, K., J. Cryst. Growth 401, 588 (2014).Google Scholar
Oda, M., Kaneko, K., Fujita, S., and Hitora, T., Jpn. J. Appl. Phys. 55, 1202B4 (2016).Google Scholar
Akaiwa, K., Kaneko, K., Ichino, K., and Fujita, S., Jpn. J. Appl. Phys. 55, 1202BA (2016).Google Scholar
Kawaharamura, T., Jpn. J. Appl. Phys. 53, 05FF08 (2014)Google Scholar
Fujita, S., Kaneko, K., Ikenoue, T., Kawaharamura, T., and Furuta, M., Phys. Stat. Solidi (c), 11, 1225 (2014).Google Scholar
Oda, M., Tokuda, R., Kambara, H., Tanikawa, T., Sasaki, T., and Hitora, T., Appl. Phys. Express 9, 021101 (2016).Google Scholar
Kaneko, K., Ito, Y., Uchida, T., and Fujita, S., Appl. Phys. Express 8, 095503 (2015).Google Scholar
Weiher, R. L. and Ley, R. P., J. Appl. Phys. 37, 299 (1966).Google Scholar
Fuchs, F. and Bechstedt, F., Phys. Rev. B 77, 155107 (2008).Google Scholar
Dang, G. T., Uchida, T., Kawaharamura, T., Furuta, M., Hyndman, A. R., Martinez, R., Fujita, S., Reeves, R. J., and Allen, M. W., Appl. Phys. Express 9, 041101 (2016).CrossRefGoogle Scholar
Jinno, R., Uchida, T., Kaneko, K., and Fujita, S., Appl. Phys. Express 9, 071101 (2016).Google Scholar
Uchida, T., Kawaharamura, T., Shibayama, K., Hiramatsu, T., Orita, H., and Fujita, S., Appl. Phys. Express, 7, 021303 (2014).Google Scholar
Lee, S.-D., Ito, Y., Kaneko, K., and Fujita, S., Jpn. J. Appl. Phys. 54, 030301 (2015).Google Scholar