Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T18:17:14.071Z Has data issue: false hasContentIssue false

Comparison of anti-reflective properties of single layer anatase and rutile TiO2 on GaAs based solar cells

Published online by Cambridge University Press:  09 February 2016

R. Vasan*
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701
Y. F. Makableh
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701
M. O. Manasreh
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701
*
Get access

Abstract

Anatase and rutile titanium dioxide thin films grown by a low temperature process are investigated for their use as a single layer antireflection coating for GaAs solar cells. The thin films are obtained by spin coating a layer from the TiO2 sol-gel and subsequently annealing at 150 °C. The sol-gel is synthesized by the hydrolysis of titanium isopropoxide in the presence of an acid or a base. By controlling the pH of the sol-gel during growth, pure anatase and rutile phases are obtained. A pH of around 3.0 yields anatase phase while a pH of 9.0 yields pure rutile phase TiO2. The two different phases of TiO2 are characterized by measuring the Raman scattering spectra. The optical constants, thickness and reflectance of the thin films on GaAs are obtained using a spectroscopic ellipsometer. The sol-gel is spin coated on GaAs based solar cells and annealed at 150 °C to form the anti-reflective layer. The performance of the solar cells is evaluated before and after coating with the TiO2 films. The anatase TiO2 anti-reflective films performed better than the rutile with a maximum power conversion efficiency enhancement of 50%. Quantum efficiency enhancement of 58% and 25% are obtained with anatase and rutile phase films respectively. The performance enhancement of the solar cells using these thin films can be attributed to the destructive interference of light associated with a single layer coating on the solar cell surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Makableh, Y. F., Vasan, R., Sarker, J. C., Nusir, A. I., Seal, S., and Manasreh, M. O., Solar Energy Mat. Solar Cells 123 (2014) 178182.CrossRefGoogle Scholar
Su, B. Y., Chu, S. Y., Juang, Y. D., Lin, M. C., Chang, C. C., and Wu, C. J., J. Electrochem. Soc. 159 (2012) H312H315.Google Scholar
Makableh, Y. F., Vasan, R., Lee, S., and Manasreh, M. O., Appl. Phys. Lett. 102 (2013) 19041906.Google Scholar
Lin, Y. J., Chien, L.Y., Lee, Y. Y., Chen, Y. L., Yu, C. M., Lai, Q. R., Syu, J. K., and Shiau, H. P., Conference on Lasers and Electro-Optics, 1-6 May 2011 Baltimore, MD, USA, pp. 12.Google Scholar
Jung, S. M., Kim, Y. H., Kim, S. I., and Yoo, S. I., Current Appl. Phys. 11 (2011) 538541.CrossRefGoogle Scholar
Alexieva, Z. I., Nenova, Z. S., Bakardjieva, V. S., Milanova, M. M., and Dikov, H. M., J. Phys.: Conf. Ser. 223 (2010) 204207.Google Scholar
Leem, J. W., Jun, D. H., Heo, J., Park, W. K., Park, J. H., Cho, W. J., Kim, D. E., and Yu, S., Opt. Exp. 21 (2013) A821A828.Google Scholar
Yu, P., Chang, C. H., Chiu, C. H., Yang, C. S., Yu, J. C., Kuo, H. C., Hsu, S. H., and Chang, Y. C., Adv. Mat. 21 (2009) 16181621.CrossRefGoogle Scholar
Lam, N. D., Kim, Y., Kim, K., Jung, K., Kang, H. K., and Lee, J., J. Cryst. Growth 370 (2013) 244248.Google Scholar
Yeh, L. K., Lai, K. Y., Lin, G. J., Fu, P. H., Chang, H. C., Lin, C. A., and Jr.He, H., Adv. Energy Mat. 1 (2011) 506510.Google Scholar
Yan, X., Poxson, D. J., Cho, J., Welser, R. E., Sood, A. K., Kim, J. K., and Schubert, E. F., Adv. Funct. Mat. 23 (2013) 583590.CrossRefGoogle Scholar
Li, H. X., Li, C. P., Hu, Z. D., Schaadt, D. M., Yu, E. T., J. Appl. Phys. 114 (2013) 43104317.Google Scholar
Hovhannisyan, A. S., J. Contemp Phys. 43 (2008) 136138.Google Scholar
Sai, P. H. V. S., Rao, J. V. R., Devarayapalli, K. C., and Sharma, K. V., Inter. J. Engg. Adv. Tech. 3 (2013) 396399.Google Scholar
Elfanaoui, A., Elhamri, E., Boulkaddat, L., Ihlal, A., Bouabid, K., Laanab, L., Taleb, A., and Portier, X., Inter. J. Hydro. Energy 36 (2011) 41304133.CrossRefGoogle Scholar
Ahn, Y. U., Kim, E. J., Kim, H. T., and Hahn, S. H., Mat. Lett. 57 (2003) 46604666.CrossRefGoogle Scholar
Frank, O., Zukalova, M., Laskova, B., Kurti, J., Koltaib, J., and Kavan, L., Phys. Chem. Chem. Phys. 14 (2012) 1456714572.CrossRefGoogle Scholar