Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T16:51:41.108Z Has data issue: false hasContentIssue false

Comparative Study of Surface Energies of Native Oxides of Si(100) and Si(111) via Three Liquid Contact Angle Analysis

Published online by Cambridge University Press:  01 June 2018

Saaketh R. Narayan*
Affiliation:
Arizona State University, Dept. of Physics
Jack M. Day
Affiliation:
Arizona State University, Dept. of Physics
Harshini L. Thinakaran
Affiliation:
Arizona State University, Dept. of Physics
Nicole Herbots
Affiliation:
Arizona State University, Dept. of Physics Cactus Materials, Inc.
Michelle E. Bertram
Affiliation:
Arizona State University, Dept. of Physics Cactus Materials, Inc.
Christian E. Cornejo
Affiliation:
Arizona State University, Dept. of Physics Cactus Materials, Inc.
Timoteo C. Diaz
Affiliation:
Arizona State University, Dept. of Physics Cactus Materials, Inc.
Karen L. Kavanagh
Affiliation:
Simon Fraser University, Vancouver
R. J. Culbertson
Affiliation:
Arizona State University, Dept. of Physics
Franscesca J. Ark
Affiliation:
Arizona State University, Dept. of Physics
Sukesh Ram
Affiliation:
Arizona State University, Dept. of Physics
Mark W. Mangus
Affiliation:
LeRoy Eyring Center for Solid State Physics, ASU
Rafiqul Islam
Affiliation:
Arizona State University, Dept. of Physics Cactus Materials, Inc.
*
Get access

Abstract

The effects of crystal orientation and doping on the surface energy, γT, of native oxides of Si(100) and Si(111) are measured via Three Liquid Contact Angle Analysis (3LCAA) to extract γT, while Ion Beam Analysis (IBA) is used to detect Oxygen. During 3LCAA, contact angles for three liquids are measured with photographs via the “Drop and Reflection Operative Program (DROP™). DROP™ removes subjectivity in image analysis, and yields reproducible contact angles within < ±1°. Unlike to the Sessile Drop Method, DROP can yield relative errors < 3% on sets of 20-30 drops. Native oxides on 5 x 1013 B/cm3 p- doped Si(100) wafers, as received in sealed, 25 wafer teflon boats continuously stored in Class 100/ISO 5 conditions at 24.5°C in 25% controlled humidity, are found to be hydrophilic. Their γT, 52.5 ± 1.5 mJ/m2, is reproducible between four boats from three sources, and 9% greater than γT of native oxides on n- doped Si(111), which averages 48.1 ± 1.6 mJ/m2 on four 4” Si(111) wafers. IBA combining 16O nuclear resonance with channeling detects 30% more oxygen on native oxides of Si(111) than Si(100). While γT should increase on thinner, more defective oxides, Lifshitz-Van der Waals interactions γLW on native oxides of Si(100) remain at 36 ± 0.4 mJ/m2, equal to γLW on Si(111), 36 ± 0.6 mJ/m2, since γLW arises from the same SiO2 molecules. Native oxides on 4.5 x 1018 B/cm3 p+ doped Si(100) yield a γT of 39 ± 1 mJ/m2, as they are thicker per IBA. In summary, 3LCAA and IBA can detect reproducibly and accurately, within a few %, changes in the surface energy of native oxides due to thickness and surface composition arising from doping or crystal structure, if conducted in well controlled clean room conditions for measurements and storage.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kaur, G., Dwivedi, N., Zheng, X., Liao, B., Peng, Z., Danner, A., Stangl, R., Bhatia, C. S., IEEE J. Photovolt. 7, 1224 (2017).CrossRefGoogle Scholar
Peng, W., Rupich, S. M., Shafiq, N., Gartstein, Y. N., Malko, A. V., Chabal, Y. J., Chem. Rev. 115, 12764 (2015).CrossRefGoogle Scholar
Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K., Timp, G., Nature 399, 758 (1999).CrossRefGoogle Scholar
Kern, W. and Puotinen, D. A., RCA Rev. 31, 187 (1970).Google Scholar
Yablonovitch, E., Allara, D., Chang, C. C., Gmitter, T., Bright, T. B., Phys. Rev. Letts. 57, 249 (1986).CrossRefGoogle Scholar
Higashi, G. S., Becker, R. S., Chabal, Y. J., Becker, A. J., Appl. Phys. Letts. 58, 1656 (1991).CrossRefGoogle Scholar
Herbots, N., Shaw, J., Hurst, Q., Grams, M., Culbertson, R., Smith, D. J., Atluri, V., Zimmerman, P., Queeney, K., Matls. Sci. Eng. B 87, 303 (2001).CrossRefGoogle Scholar
Royea, W. J., Juang, A., and Lewis, N. S., Appl. Phys. Letts. 77, 1988 (2000).CrossRefGoogle Scholar
Tong, Q.-Y. and Gösele, U., Semiconductor Wafer Bonding (John Wiley, 1999, 1999).Google Scholar
Faibish, R. S., Yoshida, W., Cohen, Y., J. of Colloid & Interface Sci. 256, pp. 4350 (2002).CrossRefGoogle Scholar
Matsushita, K., Monbara, T., Nakayama, K., Naganuma, H., Okuyama, S., Okuyama, K., Elec. Comm. Jap. II 84, 51 (2001).CrossRefGoogle Scholar
Matsushita, K., Fujisawa, A., Ando, N., Kobayashi, H., Naganuma, H., Okuyama, S., and Okuyama, K., J. Electrochem. Soc. 148, G401 (2001).CrossRefGoogle Scholar
Herbots, N., Xing, Q., Hart, M., Bradley, J. D., Sell, D. A., Culbertson, R. J., and Wilkens, B. J., Nucl. Inst. Meth. in Phys. Res. B 272, 330 (2012).CrossRefGoogle Scholar
Mayer, M., Amer. Inst. Phys. Conf. Proceedings 475, p. 541 (1999).Google Scholar
Herbots, N., Culbertson, R. J., Bradley, J., Hart, M. A., Sell, D. A., Whaley, S. D., US Patent 9,018,077 Filed 2010 Granted 2015Google Scholar
Herbots, N., Whaley, S. D., Culbertson, R.J., Bennett-Kennett, R., Murphy, A., Bade, M., Farmer, S., Hudzeitz, B., US Patent N° 9,589,801 Filed 2012, Granted 2017Google Scholar
Herbots, N., Bradley, J.D., Shaw, J. M., Culbertson, R. J., Atluri, V., US Patent N° 7,851,365 Filed 2007 Granted December 12, 2010. (2011) See also: Herbots; Nicole Atluri; Vasudeva P. Bradley; James D., Swati; Banerjee, Hurst; Quinton B., Xiang; Jiong US Patent N° 6,613,677, Granted September 2, 2003 (2003)Google Scholar
Herbots, N., Islam, R., US Patents pending (2018)Google Scholar
Herbots, N., Islam, R., US Patents pending (2018)Google Scholar
Code available by contacting authors, via e-mail and , or www.dropimageanalysis.com.Google Scholar
Cullen, P. A., Ph.D. Enhancement of initial stages of silicon oxidation with implanted dopants, Massachusetts Institute of Technology PhD Thesis (1991).Google Scholar
Good, R. J., van Oss, C. J., “The modern theory of contact angles and the hydrogen bond components of surface energies.” Modern approaches to wettability. Springer. pp. 127 (1992).Google Scholar
Atluri, V., Herbots, N., Dagel, D., Bhagvat, S., Whaley, S., Nucl. Instr. & Methods in Phys. Res. B Beam Interactions with Materials and Atoms 118(s 1–4):144150 (1997)CrossRefGoogle Scholar
Cornejo, C., Bertram, M., Diaz, T., Herbots, N., Narayan, S., Day, J., Ark, F., Ram, S., Dhamdhere, A., Culbertson, R., Islam, R., Kavanagh, K., This Conference, submitted to MRS Advances (2018).Google Scholar
Deal, B.E. & Grove, A.S.. (1965). General Relationship for the Thermal Oxidation of Silicon. Journal of Applied Physics. 36. 37703778.Google Scholar
Gerlach, G., Maser, K., “A Self-Consistent Model for Thermal Oxidation of Silicon at Low Oxide Thickness,” Adv. in Conden. Matter Phy., vol. 2016, 2016.Google Scholar
Pasquarello, A., Hybertsen, M. S., Car, R., “Atomic dynamics during silicon oxidation,” Fundamental Aspects of Silicon Oxidation, Chabal, Y. J., Ed., vol. 46, Springer Series in Mat. Sci., ch. 6, pp. 107125, Springer, Berlin, Germany, 2001.Google Scholar
Bradley, J.D., A new heteroepitaxial silicon dioxide nanophase on OH-(1X1) silicon (100) identified via 3.05 MEV ion channeling and the new 3-D multistring code, Arizona State University PhD Thesis.Google Scholar
Whaley, S., Nano-Bonding of Silicon Oxides-based surfaces at Low Temperature: Bonding Interphase Modeling via Molecular Dynamics and Characterization of Bonding Surfaces Topography, Hydro-affinity and Free Energy, Arizona State University PhD Thesis.Google Scholar
Bennett-Kennett, R., Wet NanoBonding™: Catalyzing Molecular Cross-Bridges and Interphases Between Nanoscopically Smoothed Si-Based Surfaces and Tailoring Surface Energy Components, Arizona State University B.Sc. Thesis.Google Scholar
Davis, E., Wet NanobondingTM of Semiconducting Surfaces Optimized via Surface Energy Modification Using Three Liquid Contact Angle Analysis as a Metrology, Arizona State University B.Sc. Thesis.Google Scholar
Mahajan, S., Rozgonyi, G. A., and Brazen, P., Appl. Phys. Lett. 30, 73 (1977).CrossRefGoogle Scholar
Ponce, F. A., Yamashita, T., Hahn, S., Appl. Phys. Lett. 43, 11 (1983).CrossRefGoogle Scholar
Queeney, K.T., Herbots, N., Shaw, J.M., Atluri, V., Chabal, Y.J., Infrared spectroscopic analysis of an ordered Si/SiO2 interface, Appl. Phys. Lett. 84 (2004) 493495.CrossRefGoogle Scholar
Shaw, J., Herbots, N., Hurst, Q. B., Bradley, D., Culbertson, R. J., “Atomic displacement free interfaces and atomic registry in SiO2/(1x1) Si(100).” Jour. of App. Phys. 100, 10 (2006).CrossRefGoogle Scholar
Shaw, J., Ordered interfaces and atomic registry of Silicon(100) surfaces and silicon dioxide, Arizona State University PhD Thesis.Google Scholar
Bradley, J., Herbots, N., Culbertson, R. J., Shaw, J., Atluri, V., “A New 3D Multistring Code to Identify Compound Oxide Nanophase with Ion Channeling,” Mat. Res. Soc. Proc. Vol. 996 (2007).CrossRefGoogle Scholar
PubChem Open Chemistry Database https://pubchem.ncbi.nlm.nih.gov/compound/Silica, retrieved May 17, 2018Google Scholar