Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T03:36:43.733Z Has data issue: false hasContentIssue false

CO Sensor based on Thin Film of ZnO Nanoparticles

Published online by Cambridge University Press:  04 September 2017

Carlos Aquino López*
Affiliation:
Division of Graduate Studies and Research, Instituto Tecnológico de Toluca, TecNM-SEP, Avenida Tecnológico, s/n, Colonia Agrícola Buenavista, Metepec, 52149, México.
Guillermo Carbajal-Franco
Affiliation:
Division of Graduate Studies and Research, Instituto Tecnológico de Toluca, TecNM-SEP, Avenida Tecnológico, s/n, Colonia Agrícola Buenavista, Metepec, 52149, México.
Fernanda Márquez Quintana
Affiliation:
Division of Graduate Studies and Research, Instituto Tecnológico de Toluca, TecNM-SEP, Avenida Tecnológico, s/n, Colonia Agrícola Buenavista, Metepec, 52149, México.
Alejandro Ávila Garcia
Affiliation:
Departamento de Ingeniería Eléctrica, Sección de Electrónica del Estado Sólido, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, No. 2508, Cd. de México, 07360, Mexico.
*
Get access

Abstract

In this research, zinc chloride has been used as precursor and zinc oxide nanostructures have been synthesized by Sol-Gel process, using deionized water and 2-propanol as solvents in order to evaluate their influence on the final materials and their properties. Thin films of synthesized samples were deposited on glass substrates by the dipping method. The structure and morphology of crystals were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The electrical response of the samples to CO was investigated at different operating temperatures and sensitivity curves are presented for samples synthesized in water and 2-propanol (IsOH) solvents. The SEM analysis revealed that ZnO thin films have yielded to different morphologies depending on the solvent, and material was found on the non-immersed side of the substrate attributable to migration during the dip-coating process. XRD analysis shows that the samples present the ZnO wurtzite structure. In EDS analysis it was found the presence of chlorine on the sample, opening the possibility the presence of zinc oxychloride.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Madou, M. J., Morrison, S.R. (Eds.), Chemical Sensing with Solid State Devices, Academic Press, New York, 1989.Google Scholar
Vancu, A., Ionescu, R., Bârsan, N., in: Ciureany, P., Middelhoek, S. (Eds.), Thin Film Resistive Sensors, IOP Publishing Ltd., 1992, p. 437 (Chapter 6).Google Scholar
Capone, S., Siciliano, P., Gas sensors from nanostructured metal oxides. Encyclopedy of Nanoscience and Nanotechnology, 2004, 769804.Google Scholar
Xu, C., Tamaki, J., Miura, N., Yamazoe, N., Sens. Actuators B3 (1991) Page 147.Google Scholar
Yamazoe, N.. Sens and Actuators B. Vol. 5 (1991), 719.Google Scholar
Bârsan, N., Schweizer-Berberich, M., Göpel, W., Fresenius, J. Anal. Chem. 365 (1999) 287.Google Scholar
Hjiri, M., El Mir, L., Leonardi, S. G., Donato, N., Neri, G., Nanomaterials Vol. 3(3)(2013), 357369.Google Scholar
Bhattacharyya, P., Basu, P.K., Saha, H., Basu, S. Sensors and Actuators, 10 June 2007, 6267.Google Scholar
Sahay, P. P Journal of materials science. Vol. 40 (2005), 43834385.Google Scholar
Dong, L.F., Cui, Z.L., Zhang, Z.K., Nanostruct. J. Mater. Vol. 8(7) (1997). 815823.Google Scholar
Gong, H., J.Q, H., Wang, J.H., Ong, C.H., Zhu, F.R., Sens. Actuators B 115 (2006) 247251.Google Scholar
Soulantica, K., Erades, L., Sauvan, M., Senocq, F., Maisonnat, A., Chaudret, B., Adv. Funct. J.Mater. 13 (2005), 553557.Google Scholar
Epifani, Comini, Arbiol, Diaz, Sergent, T. Pagnier, Siciliano, Faglia, Morante, Senors and. Actuators B 130 (2008) 483487.CrossRefGoogle Scholar
Jonesa, A. C., Hitchman, M. I.. Overview of Chemical Vapour Deposition.Thin Film Innovations, chapter 1. Department of Chemistry, University of Liverpool.Google Scholar
Thakur, V., Verma, U.P. Rajaram, P., Journal of Materials Science: Materials in Electronics. Vol. 25(7) (2014), 32423250.Google Scholar
Marquez, M. Carbajal, G. Pacheco, J. Rev. Simulacion y Laboratorio. Vol. 3(7)(2017). 2532 Google Scholar
Josiah, C., Bertha, I, Peacock, D., American pharmaceutical association. 1918. 689695.Google Scholar
Carbajal-Franco, G., Eastman, M, Ramana, C.V, Ceramics International. Vol. 39 (2013). 45814587 Google Scholar
Mang, A., Reimann, K., Rubenacke, S Solid State Commun. 1995. 94251.Google Scholar
Morrison, R., Sensors and Actuators Volume 2, (1981–1982), 329341.Google Scholar