Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T13:02:54.439Z Has data issue: false hasContentIssue false

Characterization Microstructural and Electrochemical of AgPd Alloy Bimetallic Nanoparticles

Published online by Cambridge University Press:  05 September 2017

A. Santoveña
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro76230, México.
C. Rodriguez-Proenza
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro76230, México.
J.A. Maya-Cornejo
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro76230, México.
A. Ruiz-Baltazar
Affiliation:
CONACYT, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro76230, México
D. Bahena
Affiliation:
Laboratorio Avanzado de Nanoscopía Electrónica (LANE), Centro de Investigación y de Estudios Avanzados del I.P.N., Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, México D.F., 07360, México.
J. Ledesma
Affiliation:
División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Qro., México
R. Pérez
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro76230, México.
R. Esparza*
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro76230, México.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bimetallic nanoparticles are of special interest for their potential applications to fuel cells, among the bimetallic systems, AuPd bimetallic nanoparticles have received great interest as they can be widely used as effective catalysts for various electrochemical reactions. Monodisperse AgPd alloy nanoparticles were synthesized by polyol method using silver nitrate and potassium tetrachloropalladate(II) in ethylene glycol as the reducing agent at 160 °C. Structural, compositional and electrochemical characterizations of synthesized bimetallic nanoparticles were investigated. High-angle annular dark field scanning/transmission electron microscopy (HAADF-STEM) images and parallel beam X-ray diffraction (XRD) of the bimetallic nanoparticles were obtained. XRD and the contrast of the HAADF-STEM images show that the bimetallic nanoparticles have an alloy structure. Cyclic voltammetry was carried out in order to confirm the electrochemical responses of the AgPd/C electrocatalysts for methanol oxidation. Thanks to the narrow size distribution of the AgPd alloy bimetallic nanoparticles (9.15 nm) the supported AgPd/C electrocatalysts have high catalytic activity toward methanol electro-oxidation.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Singh, A. K. and Xu, Q., ChemCatChem 5, 652676 (2013).CrossRefGoogle Scholar
Toshima, N. and Yonezawa, T., New Journal of Chemistry 22, 11791201 (1998).Google Scholar
Nasrabadi, H. T., Abbasi, E., Davaran, S., Kouhi, M. and Akbarzadeh, A., Artificial Cells, Nanomedicine, and Biotechnology 44, 376380 (2016)Google Scholar
Kim, H. Y., Kim, D. H., and Lee, H. M., Journal of Nanoscience and Nanotechnology 11, 22512255 (2011).Google Scholar
Yin, Z., Lin, L. L., and Ma, D., Catalysis Science & Technology 4, 41164128 (2014).CrossRefGoogle Scholar
Simon, S., Alcouffe, P., and Espuche, E., Journal of Polymer Science Part B: Polymer Physics 52, 12111220 (2014).Google Scholar
Yang, L., Hua, X., Su, J., Luo, W., Chen, S., and Cheng, G., Applied Catalysis B: Environmenta1 168-169, 423428 (2015).CrossRefGoogle Scholar
Sun, D., Li, P., Yang, B., Xu, Y., Huang, J., and Li, Q., RSC Advances 6, 105940105947 (2016).CrossRefGoogle Scholar
Kumar-Krishnan, S., Estevez-González, M., Pérez, R., Esparza, R., Meyyappan, M.., RSC Advances 7, 2717027176 (2017).Google Scholar
Ghosh, T., Satpati, B., and Senapati, D., Materials Chemistry C 2, 24392447 (2014).Google Scholar
Zaleska-medynska, A., Marchelek, M., Diak, M., and Grabowska, E., Advances in Colloid and Interface Science 229, 80107 (2016).Google Scholar
Nellist, P. D., Advances in Imaging and Electron Physics 113, 147203 (2008).Google Scholar
Esparza, R., García-Ruiz, A. F., Velázquez Salazar, J. J., Pérez, R., and José-Yacamán, M, Journal of Nanoparticle Research 15, 1342 (2013).Google Scholar
Singh, B., and Dempsey, E., RSC Advances 3, 22792287 (2013).Google Scholar
Divya, P. and Ramaprabhu, S., Journal of Materials Chemistry A 1, 1360513611 (2013).Google Scholar
Li, F., Guo, Y., Chen, M., Qiu, H., Sun, X., Wang, W., Liu, Y., and Gao, J., Int. Journal of Hydrogen Energy 38, 1424214249 (2013).Google Scholar
Hofstead-Duffy, A. M., Chen, D. J., Sun, S. G., and Tong, Y. J., Journal of Materials Chemistry 22, 52055208 (2012).Google Scholar