Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-16T22:23:37.276Z Has data issue: false hasContentIssue false

Caffeine and irgasan removal from water using bamboo, laurel and moringa residues impregnated with commercial TiO2 nanoparticles

Published online by Cambridge University Press:  03 February 2020

Gonzalo R. León
Affiliation:
Departamento de Ingenieria Civil y Ambiental, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, 170413, Quito, Ecuador
María Belén Aldás
Affiliation:
Departamento de Ingenieria Civil y Ambiental, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, 170413, Quito, Ecuador
Víctor H. Guerrero
Affiliation:
Departamento de Materiales, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, 170413, Quito, Ecuador
Andrea C. Landázuri
Affiliation:
Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierias - Grupo de Ingenieria, Ciencias Aplicadas & Simulación GICAS, Diego de Robles y Via Interoceánica, P.O. Box 17-0901, Quito, Ecuador
Cristina E. Almeida-Naranjo*
Affiliation:
Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, 170413, Quito, Ecuador
*
Get access

Abstract

The adsorption/degradation of caffeine and irgasan from aqueous artificial solutions by using.Lignocellulosic residues (LR) impregnated with TiO2 nanoparticles was studied. Three different LR were used: bamboo (Guadua angustifolia), laurel (Cordia allidora) and moringa (Moringa oleifera Lam.), each one with three nominal particle size ranges: 75–149, 45–75, and ≤45 μm. Commercially available TiO2 nanoparticles were added to these residues using the wet impregnation technique. The chemical composition of the LR was determined according to ASTM standards. FTIR spectroscopy and scanning electron microscopy were used to determine the functional groups and morphology of the modified materials, respectively. Adsorption/degradation tests were carried out in batch systems as a function of adsorbent concentration, contact time, nanoparticle content on the impregnated residues and light type influence. The maximum adsorption capacity was (37.1 mg. g-1/55.3 mg.g-1), using 40 wt.% nanoparticle-impregnated ≤45 μm laurel residues during 180 minutes, for a (7.0/0.7 g.L-1) concentration of (caffeine/irgasan). The caffeine adsorption isotherms were well described by the Langmuir and Freundlich models, while the Freundlich model describes irgasan adsorption. The use of UV radiation accelerated threefold the removal process.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Archana, G., Dhodapkar, R., & Kumar, A., “Ecotoxicological risk assessment and seasonal variation of some pharmaceuticals and personal care products in the sewage treatment plant and surface water bodies (lakes)”,. Environ. Monit. Assess., 189(9), pp. 446, 2017.CrossRefGoogle Scholar
Yang, Y., Ok, Y., Kim, K., Kwon, E. and T sang, Y., “Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review”, Sci. Total Environ., vol 569, pp. 303320, 2017.10.1016/j.scitotenv.2017.04.102CrossRefGoogle Scholar
Luo, Y. et al., “A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment”, Sci. Total Environ., vol. 473, pp. 619–64, 2014.10.1016/j.scitotenv.2013.12.065CrossRefGoogle ScholarPubMed
Ali, I., Asim, M., & Khan, T. A., “Low cost adsorbents for the removal of organic pollutants from wastewater”. J. Environ. Manage, 113, 170183, 2012.10.1016/j.jenvman.2012.08.028CrossRefGoogle ScholarPubMed
Miretzky, P., & Cirelli, A. F., “Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review”. J. Hazard. Mater., 180(1-3), pp. 119, 2010.10.1016/j.jhazmat.2010.04.060CrossRefGoogle ScholarPubMed
Pi, Y. et al., “Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs)”, Chem. Eng. J., vol. 337, pp. 351371, 2018.10.1016/j.cej.2017.12.092CrossRefGoogle Scholar
Daghrir, R., Drogui, P. and Robert, D., “Modified TiO2 for environmental photocatalytic applications: a review”, Ind. Eng. Chem. Res., vol. 52, pp. 35813599, 2013.10.1021/ie303468tCrossRefGoogle Scholar
Zheng, X. et al., “Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism”. J. Colloid Interface Sci., vol. 527, pp. 202213, 2018.CrossRefGoogle ScholarPubMed
Arfanis, M. et al., “Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes”, Chem. Eng. J., vol. 310, pp. 525536, 2017.10.1016/j.cej.2016.06.098CrossRefGoogle Scholar
Álvarez, P., Jaramillo, J., López-Pi, F. and Plucinski, P., “Environmental Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water”, Appl. Catal. B-Environ. vol. 100, pp. 338345, 2010.10.1016/j.apcatb.2010.08.010CrossRefGoogle Scholar
Sponza, D., Güney, G., “Photodegradation of some brominated and phenolic micropollutants in raw hospital wastewater with CeO2 and TiO2 nanoparticles”, Water Sci. Technol., vol. 76, pp. 6032622, 2017.10.2166/wst.2017.433CrossRefGoogle ScholarPubMed
Martínez-Hernández, V., Meffe, R., Herrera, S. and de Bustamante, I., “The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study”, Sci. Total Environ., vol. 559, pp. 232241, 2016.10.1016/j.scitotenv.2016.03.131CrossRefGoogle ScholarPubMed
Paredes-Laverde, M., Silva-Agredo, J. & Torres-Palma, R.A., , R. A., “Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents”. J. Environ. Manage., 213, pp. 98108, 2018.CrossRefGoogle ScholarPubMed
Abou-Gamra, Z. and Ahmed, M., “Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye”, J. Photochem. Photobiol. B Biol., vol. 160, pp. 134141, 2016.10.1016/j.jphotobiol.2016.03.054CrossRefGoogle ScholarPubMed
Saputro, A. and Verawati, I., “Preparation of TiO2 photocatalyst with the matrix of palm wood (Arenga pinnata) waste in the photodegradation of batik wastewater”, in Journal of Physics: Conference Series, vol. 795, pp. 510, 2017.Google Scholar
Ramimoghadam, D., Bagheri, S. and Abd Hamid, S., “Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material”. Biomed Res. Int., pp. 17, 2014.CrossRefGoogle ScholarPubMed
Oram, B., “UV Disinfection Drinking Water”. Water Research Center, Dallas, PA, USA. https://www.water-research.net/index.php/water-treatment/water-disinfection/uv-disinfection (accessed 23 February 2018), 2018.Google Scholar
Wang, Y. et al., “Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products”, Water Res, vol. 92, pp. 104112, 2016.10.1016/j.watres.2016.01.038CrossRefGoogle ScholarPubMed
Gracia-Lor, E. et al., “Estimation of caffeine intake from analysis of caffeine metabolites in wastewater”. Sci. Total Environ. vol. 609, pp. 15821588, 2017.10.1016/j.scitotenv.2017.07.258CrossRefGoogle ScholarPubMed
Alfiya, Y., Friedler, E., Westphal, J., Olsson, O., Dubowski, Y., “Photodegradation of micropollutants using V-UV/UV-C processes; Triclosan as a model compound”, Sci. Total Environ. Vol. 601, pp. 397404, 2017.Google Scholar
Cheng, L., Adhikari, S., Wang, Z. & Ding, Y., “Characterization of bamboo species at different ages and bio-oil production”, J Anal. Appl. Pyrol., 116, pp. 215222, 2015.10.1016/j.jaap.2015.09.008CrossRefGoogle Scholar
Idris Maizuwo, A., “Phytochemical constituents, biological activities, therapeutic potentials and nutritional values of Moringa oleifera (Zogale): a review”, J. Drug Des. Med. Chem., vol. 3, pp. 6066, 2017.Google Scholar
Luo, Y., Wang, X., Xu, D and Wang, Y., “Applied surface science preparation and characterization of poly (lactic acid) - grafted TiO2 nanoparticles with improved dispersions”, J. Appl. Polym. Sci., vol. 255, pp. 67956801, 2009.Google Scholar
Liu, X., , X., Liu, Y., Lu, S., Guo, W., Xi, B., “Performance and mechanism into TiO2/Zeolite composites for sulfadiazine adsorption and photodegradation”. Chem. Eng. J., 350, pp. 131147, 2018.10.1016/j.cej.2018.05.141CrossRefGoogle Scholar
Jiang, K., Kitamura, T., Wada, Y. and Yanagida, S., “Pore size distribution and porosities of nano-TiO2 films made by using cellulosic thickener and their influence on performance of dye-sensitized solar cells”, Bull. Chem. Soc. Jpn., vol. 76, pp. 24152418, 2003.CrossRefGoogle Scholar
Luo, Y., Jianqiu, C., Wu, C., Zhang, J., Tang, J., Shang, J. & Liao, Q., “Effect of particle size on adsorption of norfloxacin and tetracycline onto suspended particulate matter in lake”. Environmental Pollution. 244, pp. 549559, 2019.CrossRefGoogle ScholarPubMed
Żółtowska-Aksamitowska, S., Bartczak, P., Zembrzuska, J. and Jesionowski, T., “Removal of hazardous non-steroidal anti-inflammatory drugs from aqueous solutions by biosorbent based on chitin and lignin”, Sci. Total Environ., vol. 612, pp. 12231233, 2018.10.1016/j.scitotenv.2017.09.037CrossRefGoogle ScholarPubMed
Paethanom, A. & Yoshikawa, K., “Influence of Pyrolysis Temperature on Rice Husk Char Characteristics and Its TarAdsorption Capability”, Energies, 5(12), pp. 49414951, 2012.CrossRefGoogle Scholar