Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T20:15:44.334Z Has data issue: false hasContentIssue false

Ca2+-in vivo doped biosilica from living Thalassiosira weissflogii diatoms: investigation on Saos-2 biocompatibility

Published online by Cambridge University Press:  16 January 2017

G. Leone
Affiliation:
Dipartimento di Chimica, Università. degli Studi di Bari “Aldo Moro”. Via Orabona, 4, 70126 Bari, Italy.
D. Vona
Affiliation:
Dipartimento di Chimica, Università. degli Studi di Bari “Aldo Moro”. Via Orabona, 4, 70126 Bari, Italy.
M. Lo Presti
Affiliation:
Dipartimento di Chimica, Università. degli Studi di Bari “Aldo Moro”. Via Orabona, 4, 70126 Bari, Italy.
L. Urbano
Affiliation:
Dipartimento di Chimica, Università. degli Studi di Bari “Aldo Moro”. Via Orabona, 4, 70126 Bari, Italy.
S. Cicco
Affiliation:
CNR ICCOM, Via Orabona, 4, 70126 Bari, Italy
R. Gristina
Affiliation:
CNR NANOTECH, Via Orabona, 4, 70126 Bari, Italy.
F. Palumbo
Affiliation:
CNR NANOTECH, Via Orabona, 4, 70126 Bari, Italy.
R. Ragni
Affiliation:
Dipartimento di Chimica, Università. degli Studi di Bari “Aldo Moro”. Via Orabona, 4, 70126 Bari, Italy.
G. M. Farinola*
Affiliation:
Dipartimento di Chimica, Università. degli Studi di Bari “Aldo Moro”. Via Orabona, 4, 70126 Bari, Italy.
*
Get access

Abstract

Diatoms represent a natural source of mesoporous silica whose applications range from biomedical to photonic fields. Porous hierarchically organized micro structures, the biosilica shells called frustules, can be obtained by removal of the organic biological matter from the unicellular living algae. Diatoms frustules have been investigated as scaffold for bone tissue growth taking advantage of their nanostructured surface and of the possibility to chemically modify the biosilica. Here we report on an easy way to calcium-doped biosilica supports for bone tissue regeneration by in vivo feeding the algae. FTIR and EDX analyses confirmed the incorporation of calcium into the mesopouros biosilica. Cell viability studies showed an ameliorative effect on the Saos-2 cells spreading compared with the cells grown on non-doped biosilica supports.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., Zink, J., Chem. Soc. Rev., 41, 2590 (2012)CrossRefGoogle Scholar
Tang, F., Li, L., Chen, D., Adv. Mater., 24, 15041534 (2012)Google Scholar
Argyo, C., Weiss, V., Bräuchle, C., Bein, T., Chem. Mater., 26, 435 (2014)CrossRefGoogle Scholar
Hildebrand, M., Chem. Rew., 108 (11), 4855 (2008)CrossRefGoogle Scholar
Werner, D., The Biology of Diatoms, (University of California Press, Berkley, 1977)Google Scholar
Wetherbee, R., Science, 298 (5593), 547 (2002)Google Scholar
Vona, D., Urbano, L., Bonifacio, M. A., De Giglio, E., Cometa, S., Mattioli-Belmonte, M., Palumbo, F., Ragni, R., Cicco, S. R., Farinola, G. M., Data in brief, 8, 312 (2016)Google Scholar
Gordon, R., Losic, D, Tiffany, M. A., Nagy, S. S., Sterrenburg, F. A. S., Trends Biotechnol., 27, 116, (2009)Google Scholar
Losic, D., Mitchell, J. G., Voelcker, N. H., Adv. Mater., 21, 2947 (2009)Google Scholar
Leonardo, S., Prieto-Simon, B., Campàs, M.., Trends in Analytical Chemistry, 79, 276 (2016)Google Scholar
Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., Sumper, M., Appl. Phys. B: Lasers Opt., 78, 257 (2004)Google Scholar
Parker, A. R., Townley, H. E., Nat. Nanotechnol., 2, 347 (2007)Google Scholar
Vona, D., Lo Presti, M., Cicco, S. R., Palumbo, F., Ragni, R., Farinola, G. M., MRS Adv., 1 (2015)Google Scholar
Losic, D., Yu, Y., Aw, M. S., Simovic, S., Thierry, B., Addai-Mensah, J., Chem. Commun., 46, 6323 (2010)Google Scholar
Vona, D., Leone, G., Ragni, R., Palumbo, F., Evidente, A., Vurro, M., Farinola, G. M., Cicco, S. R., MRS Advances, 1 (2015)Google Scholar
Delalat, B., Sheppard, V. C., Ghaemi, S. R., Rao, S., Prestidge, C. A., McPhee, G., Rogers, M.L., Donoghue, J. F., Pillay, V., Johns, T. G., Kröger, N., Voelcker, N. H., Nat. Comm., 6 (2015)Google Scholar
Losic, D., Rosengarten, G., Mitchell, J. G., Voelcker, N. H., J. Nanosci. Nanotechnol., 6, 982 (2006)Google Scholar
Townley, H. E., Parker, A. R., Adv. Funct. Mater., 18, 369 (2008)Google Scholar
Cicco, S. R., Vona, D., De Giglio, E., Cometa, S., Mattioli-Belmonte, M., Palumbo, F., Ragni, R., Farinola, G. M., ChemPlusChem, 80 (7), 1104 (2015)Google Scholar
Lang, Y., Del Monte, F., Collins, L., Rodriguez, B. J., Thompson, K., Dockery, P., Finn, D. P., Pandit, A., Nat. Comm., 4, 3683 (2013)Google Scholar
Jeffryes, C., Gutu, T., Jiao, J., Rorrer, G. L., Mat. Sci. Eng., 28 (1), 107 (2008)Google Scholar
Lang, Y., Del Monte, F., Rodriguez, P. J., Dockery, P., Finn, D. P., Pandit, A., Sci. Rep., 3 (2013)Google Scholar
Yamaguchi, T., Kifor, O., Chattopadhyay, N., Brown, E. M., Bioc. Bioph. Res. Comm., 243 (3), 753 (1998)Google Scholar
Cooksey, B., Cooksey, K. E., Plant. Phys., 65 (1), 129 (1980)CrossRefGoogle Scholar
Wu, C., Chang, J., Interface Focus, 2, 292 (2012)Google Scholar
Pietak, A. M., Reid, J. W., Stott, M. J., Sayer, M., Biomat., 28 (28), 4023 (2007)Google Scholar
Guillard, R. R. L., Ryther, J. H., Can. J. Microbiol., 8, 229 (1962)Google Scholar
Radchenko, J. G., Il’yash, L. V., Fedorov, V. D., Biol. Bull. Russ. Acad. Sci., 31, 67 (2004)Google Scholar
Ratti, S., Knoll, A. H., Giordano, M., Geobiology, 9, 301 (2011)Google Scholar