Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T21:50:10.307Z Has data issue: false hasContentIssue false

Bias Temperature Instability (BTI) in high-mobility channel devices with high-k dielectric stacks: SiGe, Ge, and InGaAs

Published online by Cambridge University Press:  23 May 2016

J. Franco*
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
B. Kaczer
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
A. Vais
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium KU Leuven, Belgium
A. Alian
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
H. Arimura
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
V. Putcha
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium KU Leuven, Belgium
S. Sioncke
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
N. Waldron
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
D. Zhou
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
L. Nyns
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
J. Mitard
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
L. Witters
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
M. Heyns
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium KU Leuven, Belgium
G. Groeseneken
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium KU Leuven, Belgium
N. Collaert
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
D. Linten
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
A. Thean
Affiliation:
imec, Kapeldreef 75, 3001 Leuven, Belgium
*
Get access

Abstract

We present a review of our recent studies of Bias Temperature Instability (BTI) in Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs) fabricated with different material systems, highlighting the reliability opportunities and challenges of each novel device family. We discuss first the intrinsic reliability improvement offered by SiGe and Ge p-channel technologies, if a Si cap is used to passivate the channel, in order to fabricate a standard SiO2/HfO2 gate stack. We focus on SiGe gate stack optimizations for maximum BTI reliability, and on a simple physics-based model able to reproduce the experimental trends. This model framework is then used to understand the suboptimal BTI reliability and excessive time-dependent variability induced by oxide defect charging in different high-mobility channel gate stacks, such as Ge/GeOx/high-k and InGaAs/high-k. Finally we discuss how to pursue a reduction of charge trapping in alternative material systems in order to boost the device reliability and minimize time-dependent variability.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Groeseneken, G., Degraeve, R., Kaczer, B., Martens, K., Trends and perspectives for electrical characterization and reliability assessment in advanced CMOS technologies , in IEEE Proc. Solid-State Device Research Conference (ESSDERC) 2010, pp.6473.Google Scholar
Asenov, A., Brown, A. R., Davies, J. H., Kaya, S., Slavcheva, G., Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs , in IEEE Transactions on Electron Devices, Vol. 50, No. 9, pp. 18371852 (2003).Google Scholar
Grasser, T., Kaczer, B., Goes, W., Reisinger, H., Aichinger, T. et al., The Paradigm Shift in Understanding the Bias Temperature Instability: from Reaction-Diffusion to Switching Oxide Traps , in IEEE Transactions on Electron Devices, Vol. 58, No. 11, pp. 36523666 (2011).Google Scholar
Kaczer, B., Grasser, T., Roussel, P., Franco, J., Degraeve, R. et al., Origin of NBTI variability in deeply scaled pFETs ,, in IEEE Proc. International Reliability Physics Symposium (IRPS) 2010, pp. 2632.CrossRefGoogle Scholar
Kuhn, K. J., Considerations for Ultimate CMOS Scaling , in IEEE Transactions on Electron Devices, Vol. 59, No. 7, pp. 18131828 (2012).Google Scholar
Franco, J., Kaczer, B., Stesmans, A., Afanas’ev, V., Martens, K. et al. , Impact of Si-Passivation Thickness and Processing on NBTI Reliability of Ge and SiGe p-MOSFETs , presented at the 2009 IEEE Semiconductor Interface Specialists Conference (SISC), Arlington, VA, 2009 (unpublished).Google Scholar
Franco, J., Kaczer, B., Cho, M., Eneman, G., Groeseneken, G. et al. , Improvements of NBTI reliability in SiGe p-FETs , in IEEE Proc. International Reliability Physics Symposium (IRPS) 2010, pp. 10821085.CrossRefGoogle Scholar
Franco, J., Kaczer, B., Eneman, G., Mitard, J., Stesmans, A. et al., 6Å EOT Si 0.45 Ge 0.55 pMOSFET with Optimized Reliability (V DD =1V): Meeting the NBTI Lifetime Target at Ultra-Thin EOT , in IEEE Proc. International Electron Devices Meeting (IEDM) 2010, pp. 7073.Google Scholar
Franco, J., Kaczer, B., Roussel, P., Mitard, J., Cho, M. et al., SiGe channel technology: Superior reliability toward ultrathin EOT devices; part I: NBTI , in IEEE Transactions on Electron Devices, vol. 60, pp. 396404 (2013).Google Scholar
Krishnan, S., Kwon, U., Moumen, N., Stoker, M., Harley, E. et al. , A manufacturable dual channel (Si and SiGe) high-k metal gate CMOS technology with multiple oxides for high performance and low power applications , in IEEE Proc. International Electron Devices Meeting (IEDM) 2011, pp. 634637.Google Scholar
Gong, X., Su, S., Liu, Bin, Wang, L., Wang, Wei et al. , Fabrication and Negative Bias Temperature Instability (NBTI) Study on Ge 0.97 Sn 0.03 p-MOSFETs with Si 2 H 6 Passivation and HfO 2 High-k and TaN Metal Gate , in Electrochemical Society Transactions, Vol. 50, No. 9, pp. 949956 (2012).Google Scholar
Franco, J., Kaczer, B., Toledano-Luque, M., Roussel, Ph. J., Kauerauf, T. et al. , SiGe Channel Technology: Superior Reliability toward Ultra-Thin EOT devices–Part II: Time-Dependent Variability in Nanoscaled Devices and Other Reliability Issues , in IEEE Transactions on Electron Devices, Vol. 60, No. 1, pp. 405412 (2013).Google Scholar
Franco, J., Kaczer, B., Roussel, P., Mitard, J., Sioncke, S. et al., Understanding the suppressed charge trapping in relaxed- and strained-Ge/SiO 2 /HfO 2 pMOSFETs and implications for the screening of alternative high-mobility substrate/dielectric CMOS gate stacks , in IEEE Proc. International Electron Devices Meeting (IEDM) 2013, pp. 15.2.1-4.Google Scholar
Martens, K., Mitard, J., De Jaeger, B., Meuris, M., Maes, H. et al. , Impact of Si-thickness on interface and device properties for Si-passivated Ge pMOSFETs , in IEEE Proc. Solid-State Device Research Conference (ESSDERC) 2008, pp. 138141.Google Scholar
Zhang, R., Taoka, N., Huang, P., Takenaka, M. and Takagi, S., 1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation , in IEEE Proc. International Electron Device Meeting (IEDM) 2011, pp. 642645.Google Scholar
Alian, A., Pourghaderi, M.A., Mols, Y., Cantoro, M., Ivanov, T., et al. , Impact of the channel thickness on the performance of ultrathin InGaAs channel MOSFET devices , in IEEE Proc. International Electron Device Meeting (IEDM) 2013, pp. 16.6.1-4.Google Scholar
Franco, J. Alian, A., Kaczer, B., Lin, D., Ivanov, T. et al. , Suitability of high-k gate oxides for III–V devices: A PBTI study in In 0.53 Ga 0.47 As devices with Al 2 O 3 , in IEEE Proc. International Reliability Physics Symposium (IRPS) 2014, pp. 6A.2.1-4.Google Scholar
Franco, J., Kaczer, B., Waldron, N., Roussel, Ph.J., Alian, A. et al., RTN and PBTI-induced Time-Dependent Variability of Replacement Metal-Gate High-k InGaAs FinFETs , in IEEE Proc. International Electron Device Meeting (IEDM) 2014, pp. 506509.CrossRefGoogle Scholar