Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T01:31:08.910Z Has data issue: false hasContentIssue false

Barochemistry to Multifunctional High Energy Density Solid: Extended Phases of N2, CO, and N2+CO at High Pressures

Published online by Cambridge University Press:  29 May 2017

Choong-Shik Yoo*
Affiliation:
Department of Chemistry and Institute for Shock Physics and, Washington State University, Pullman, WA 99164, U.S.A.
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many simple diatomic and triatomic molecules such as N2 and CO2 have the potential to form extended “polymeric” solids under extreme conditions, which can store a large sum of chemical energy in its three-dimensional network structures made of strong covalent bonds. Diatomic nitrogen is particularly of interest because of the uniquely large energy difference between that of the single bond (160 kJ/mol) and that of the triple bond (954 kJ/mol). As such, the transformation of a singly bonded polymeric nitrogen back to triply-bonded diatomic nitrogen molecules can release nearly 5 times the energy of TNT without any negative environmental impact. In this paper, we will describe our recent research efforts to synthesize novel extended phases of isoelectronic systems of N2 and CO, as well as those of N2+CO mixtures to lower the transition pressures and enhance the stability of recovered products at ambient condition.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Mailhiot, C., Yang, L. H., McMahan, A. K., Phys. Rev. B. 46, 1441914435 (1992).Google Scholar
Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A., Boehler, R., Nat. Mat. 3, 558563 (2004).Google Scholar
Lipp, M. J., Klepeis, J. P., Baer, B. J., Cynn, H., Evans, W.J., Iota, V., Yoo, C.-S., Phys. Rev. B 76, 014113 (2007).Google Scholar
Tomasino, D., Kim, M., Smith, J., Yoo, C. S., Phys. Rev. Lett. 113, 205502 (2014).CrossRefGoogle Scholar
Ma, Y., Oganov, A.R., Li, Z., Xie, Y., Kotakoski, J., Phys. Rev. Lett. 102, 065501 (2009).CrossRefGoogle Scholar
Wang, X., Wang, Y., Miao, M., Zhong, X., Lv, J., Cui, T., Li, J., Chen, L., Pickard, C.J., Ma, Y., Phys. Rev. Lett. 109. 175502 (2012).Google Scholar
Katz, A. I., Schiferl, D., Mills, R.L., J. Phys. Chem. 88, 3176 (1984).Google Scholar
Lipp, M.J., Evans, W.J., Baer, B.J., Yoo, C.S., Nat. Mat. 4, 211 (2005).Google Scholar
Ryu, Y. J., Kim, M., Lim, J., Dias, R., Klug, D., Yoo, C.-S., J. Phys. Chem. C 120, 27548 (2016).Google Scholar
Sun, J., Klug, D.D., Pickard, C.J., Needs, R.J., Phys. Rev. Lett. 106, 145502 (2011).Google Scholar
Bernard, S., Chiarotti, G.L., Scandolo, S., Tosatti, E., Phys. Rev. Lett. 81, 2092 (1998).Google Scholar
Mills, R.L., Olinger, B., Cromer, D. T., J. Chem. Phys. 84, 2837 (1986).Google Scholar
Tomasino, D., Jenei, Z., Evans, W.J., Yoo, C.S., J. Chem. Phys. 140, 244510 (2014).Google Scholar
Raza, Z., Pickard, C.J., Pinilla, C., Saitta, A.M., Phys. Rev. Lett. 111, 235501 (2013).Google Scholar
Iota, V., Yoo, C.S., Cynn, H., Science 283, 1510 (1999).Google Scholar
Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenfontov, V., Shylin, S.I., Nature 525, 73 (2015).Google Scholar