Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T02:44:43.476Z Has data issue: false hasContentIssue false

AuCu, AgCu and AuAg Bimetallic Nanoparticles: Synthesis, Characterization and Water Remediation

Published online by Cambridge University Press:  21 July 2016

Judith Tanori*
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, 83000 Hermosillo, Sonora, México.
Diana Vargas-Hernández
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, 83000 Hermosillo, Sonora, México. Catedrática CONACYT – Universidad de Sonora, 83000 Hermosillo, Sonora, México.
Elisa Martínez-Barbosa
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, 83000 Hermosillo, Sonora, México.
Raúl Borja-Urby
Affiliation:
Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, México, D. F., México.
Arturo García-Bórquez
Affiliation:
Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, México, D. F, México.
Jesús Arenas-Alatorre
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, México, D. F., México.
Amir Maldonado
Affiliation:
Departamento de Física, Universidad de Sonora, 83000 Hermosillo, Sonora, México.
*
Get access

Abstract

Self-assembling systems of amphiphilic molecules display structures similar to those of biomineralization natural systems. This allows to somehow mimic nature to synthesize nanomaterials with low polidispersity and with diverse morphologies. In this work we describe the synthesis and characterization of gold-copper, silver-copper, and gold-silver bimetallic nanoparticles by chemical reduction in self-assembling systems of two surfactants. The nanoparticles were characterized by Transmission Electron Microscopy and UV-Vis spectroscopy. We have prepared a composite material using mesoporous silica as support of the AuAg bimetallic nanoparticles. The system was used in photocatalysis experiments for water remediation applications. Our results show that the AuAg/SBA15 composite material degrades methyl orange in water from 17 ppm to 4 ppm in 30 minutes.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rodriguez, J. A., Catalysis Today 160, 3 (2011).CrossRefGoogle Scholar
Reina, T.R., Ivanova, S., Centeno, M.A., Odriozola, J.A., Applied Catalysis B: Environmental 187, 98 (2016).CrossRefGoogle Scholar
Liu, X., Wang, A., Li, L., Zhang, T., Mou, Ch. Y., Lee, J. F., Journal of Catalysis 278, 288 (2011).CrossRefGoogle Scholar
Hubkowska, K., Łukaszewski, M., Czerwiński, A., Electrochimica Acta 56, 235 (2010).CrossRefGoogle Scholar
Fu, F., Cheng, Z., Lu, J.. RSC Adv., 5, 85395 (2015).CrossRefGoogle Scholar
Xu, Y., Chen, L., Wang, X., Yao, W., Zhang, Q.. Nanoscale, 7, 10559, (2015).CrossRefGoogle ScholarPubMed
Wang, D., Peng, Q., Li, Y.. Nano Res. 3, 574580, (2010).CrossRefGoogle Scholar
Del Castillo-Castro, T., Larios-Rodríguez, E., Molina-Arenas, Z., Castillo-Ortega, M. M., Tanori, J., Composites Part A: Applied Science and Manufacturing 38, 107 (2007).CrossRefGoogle Scholar
Tanori, J., Gulik-Krziwicki, T., Pileni, M. P., Langmuir 13, 632 (1997).CrossRefGoogle Scholar
Larios, E., Molina, Z., Maldonado, A., Tanori, J.. Journal of Dispersion Science and Technology, 33, 719723, (2012).CrossRefGoogle Scholar
Gómez-Cazalilla, M., Mérida-Robles, J. M., Gurbani, A., Rodríguez-Castellón, E., Jiménez-López, A., Journal of Solid State Chemistry 180, 1130 (2007).CrossRefGoogle Scholar
Link, S., Wang, Z. L., El-Sayed, M. A., J. Phys. Chem. B 103, 3529 (1999).CrossRefGoogle Scholar
Lisiecki, I., Pileni, M.P., J. Am. Chem. Soc. 115, 3387 (1993).CrossRefGoogle Scholar