Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T07:06:29.687Z Has data issue: false hasContentIssue false

Atomic Mechanism of Arsenic Monolayer Doping on oxide-free Silicon(111)

Published online by Cambridge University Press:  20 June 2016

Roberto C. Longo
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
Eric C. Mattson
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
Abraham Vega
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
Wilfredo Cabrera
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
Kyeongjae Cho
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
Yves Chabal
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
Peter Thissen*
Affiliation:
Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*
Get access

Abstract

The reaction pathway for shallow arsenic doping of silicon by methylarsenic acid molecules directly grafted on oxide-free, H-terminated Si(111) surfaces is unraveled combining Infrared absorption spectroscopy, X-ray Photoelectron Spectroscopy, Low Energy Ion Scattering and ab initio Molecular Dynamics simulations. The overall driving force is identified as a thermodynamic instability of As+5 in contact with silicon, which initiates a self-decomposition of chemisorbed methylarsenic molecules at ∼600 K. As the temperature is increased, the As-C bond breaks -- the weakest link of the adsorbed molecule -- with release of the organic ligand and a rearrangement from a monodentate to a bidentate bonding configuration. In this process, oxygen atoms evolve by partial desorption as H2O and partial incorporation into the surface Si atom backbonds. At ∼1050 K, diffusion of As into the sub-surface region of silicon is observed. There is no evidence for As desorption and no remaining C contamination.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

International Technology Roadmap for Semiconductors. http://www.itrs.net.Google Scholar
Lin, H. -M., Lee, D., Qu, D. S., Liu, X. C., Ryu, J. J., Seabaugh, A., and Yoo, W. J.. Nat. Commun. 6, 6485 (2015).Google Scholar
Tan, L.; Buiu, O.; Hall, S.; Gili, E.; Uchino, T.; Ashburn, P., Solid-State Electron. 2008, 52, 10021007.Google Scholar
Duffy, R., Shayesteh, M., Thomas, K., Pelucchi, E., Yu, R., Gangnaik, A., Georgiev, Y. M., Carolan, P., Petkov, N., Long, B., and Holmes, J. D.. J. Mater. Chem. C 2, 9248 (2014).Google Scholar
Hughes, M. A., Fedorenko, Y., Gholipour, B., Yao, J., Lee, T. H., Gwilliam, R. M., Homewood, K. P., Hinder, S., Hewak, D. W., Elliott, S. R., and Curry, R. J.. Nat. Commun. 5, 5346 (2014).CrossRefGoogle Scholar
Chason, E., Picraux, S. T., Poate, J. M., Borland, J. O., Current, M. I., Diaz de la Rubia, T., Eaglesham, D. J., Holland, O. W., Law, M. E., Magee, C. W., Mayer, J. W., Melngailis, J., and Tasch, A. F.. J. Appl. Phys. 81, 6513 (1997).CrossRefGoogle Scholar
Jones, E. C. and Ishida, E.. Mater. Sci. Eng. R 24, 1 (1998).Google Scholar
Woo Lee, J., Sasaki, Y., Ju Cho, M., Togo, M., Boccardi, G., Ritzenthaler, R., Eneman, G., Chiarella, T., Brus, S., Horiguchi, N., Groeseneken, G., and Thean, A.. Appl. Phys. Lett. 102, 223508 (2013).Google Scholar
Renau, A.. ECS Trans. 35, 173 (2011).Google Scholar
Wallentin, J. and Borgstrom, M. T.. J. Mater. Res. 26, 2142 (2011).Google Scholar
Ho, J. C., Yerushalmi, R., Jacobson, Z. A., Fan, Z., Alley, R. L., and Javey, A.. Nat. Mater. 7, 62 (2008).Google Scholar
Ho, J. C., Yerushalmi, R., Smith, G., Majhi, P., Bennett, J., Halim, J., Faifer, V. N., and Javey, A.. Nano Lett. 9, 725 (2009).Google Scholar
O’Connell, J., Verni, G. A., Gangnaik, A., Shayesteh, M., Long, B., Georgiev, Y. M., Petkov, N., McGlacken, G. P., Morris, M. A., Duffy, R., and Holmes, J. D.. ACS Appl. Mater. Interfaces 7, 15514 (2015).Google Scholar
Ho, J. C., Ford, A. C., Chueh, Y. -L., Leu, P. W., Ergen, O., Takei, K., Smith, G., Majhi, P., Bennett, J., and Javey, A.. App. Phys. Lett. 95, 072108 (2009).Google Scholar
Voorthuijzen, W. P., Yilmaz, M. D., Naber, W. J. M., Huskens, J., and van der Wiel, W. G.. Adv. Mater. 23, 1346 (2011).Google Scholar
Puglisi, R. A., Garozzo, C., Bongiorno, C., Di Franco, S., Italia, M., Mannino, G., Scalese, S., and La Magna, A.. Sol. Energy Mater. Sol. Cells 132, 118 (2015).Google Scholar
Hubbard, K. J. and Schlom, D. G.. J. Mater. Res. 11, 2757 (1996).Google Scholar
Longo, R. C., Cho, K., Schmidt, W. G., Chabal, Y. J. and Thissen, P.. Adv. Funct. Mater. 23, 3471 (2013).CrossRefGoogle Scholar
Casey, H. C. and Pearson, G. L., Diffusion in Semiconductors, ed. by Crawford, J. J. H. and Slifkin, L. M. (New York, 1975).Google Scholar
Longo, Roberto C., Mattson, Eric C., Vega, Abraham, Cabrera, Wilfredo, Cho, Kyeongjae, Chabal, Yves J., and Thissen, Peter, Chem. Mater., 2016, 28 (7), pp 19751979.Google Scholar
O’Connell, John, Collins, Gillian, McGlacken, Gerard P., Duffy, Ray, and Holmes, Justin D., ACS Appl. Mater. Interfaces 2016, 8, 41014108.Google Scholar
Thissen, P.; Seitz, O.; Chabal, Y. J., Prog. Surf. Sci. 2012, 87, 272290.Google Scholar
Thissen, P.; Fuchs, E.; Roodenko, K.; Peixoto, T.; Batchelor, B.; Smith, D.; Schmidt, W. G.; Chabal, Y. J., J. Phys. Chem. C 2015, 119, 1694716953.Google Scholar