Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T08:38:31.075Z Has data issue: false hasContentIssue false

A-Site Deficient SrTiO3: A Possible Phonon-Glass Electron-Crystal?

Published online by Cambridge University Press:  06 June 2016

Srinivasa R. Popuri*
Affiliation:
Institute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, [email protected]
Jan-Willem G. Bos
Affiliation:
Institute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, [email protected]
*
Get access

Abstract

The thermoelectric properties of polycrystalline samples of Sr1-xLa0.67xTiO3-δ and Sr0.20La0.53Ti1−yNbyO3-δ have been investigated. The first series has a gradually increasing amount of A-site vacancies, and charge carriers linked to the oxygen deficiency. The second series has a fixed amount of A-site vacancies (27%) and variation of the Nb content was used to optimise the electrical properties. Maximum power factors of 0.6 mW m-1 K-2 for x = 0.4 and 0.4 mW m-1 K-2 for y = 0.05 were observed at 700 K. Combining these values with thermal conductivity data obtained previously, suggests that maximum figures of merit zT = 0.16 for x = 0.4 and zT = 0.2 for y = 0.05 are possible at 1000 K. This study contributes new insight on the interplay between A-site vacancies and thermoelectric performance in SrTiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rowe, D. M., Thermoelectrics handbook: macro to nano. (CRC press, 2005).Google Scholar
Koumoto, K., Wang, Y., Zhang, R., Kosuga, A. and Funahashi, R., Annual Review of Materials Research 40, 363394 (2010).Google Scholar
Okuda, T., Nakanishi, K., Miyasaka, S. and Tokura, Y., Physical Review B 63, 113104 (2001).Google Scholar
Muta, H., Kurosaki, K. and Yamanaka, S., Journal of Alloys and Compounds 392, 306309 (2005).Google Scholar
Bhattacharya, S., Dehkordi, A. M., Tennakoon, S., Adebisi, R., Gladden, J. R., Darroudi, T., Alshareef, H. N. and Tritt, T. M., Journal of Applied Physics 115, 223712 (2014).Google Scholar
Wang, Y., Fujinami, K., Zhang, R., Wan, C., Wang, N., Ba, Y. and Koumoto, K., Applied Physics Express 3, 031101 (2010).Google Scholar
Wang, N., Chen, H., He, H., Norimatsu, W., Kusunoki, M. and Koumoto, K., Scientific Reports 3, 3449 (2013).Google Scholar
Wang, J., Ye, X., Yaer, X., Zhang, B., Ma, W. and Miao, L., Scripta Materialia 99, 2528 (2015).Google Scholar
Popuri, S. R., Scott, A. J. M., Downie, R. A., Hall, M. A., Suard, E., Decourt, R., Pollet, M. and Bos, J.-W. G., RSC Advances 4, 3372033723 (2014).Google Scholar
Jackson, S. S., Azough, F. and Freer, R., Journal of Electronic Materials 43, 23312336 (2014).Google Scholar
Kovalevsky, A. V., Yaremchenko, A. A., Populoh, S., Weidenkaff, A. and Frade, J. R., Journal of Physical Chemistry C 118, 45964606 (2014).Google Scholar
Toby, B. H., Journal of Applied Crystallography 34, 210213 (2001).Google Scholar
Howard, C. J., Lumpkin, G. R., Smith, R. I. and Zhang, Z., Journal of Solid State Chemistry 177, 27262732 (2004).CrossRefGoogle Scholar
Neagu, D. and Irvine, J. T. S., Chemistry of Materials 22, 50425053 (2010).Google Scholar
Yaremchenko, A. A., Populoh, S., Patricio, S. G., Macias, J., Thiel, P., Fagg, D. P., Weidenkaff, A., Frade, J. R. and Kovalevsky, A. V., Chemistry of Materials 27, 49955006 (2015).Google Scholar